An Embarrassingly Simple Approach To Zero-Shot Learning

Bernardino Romera Paredes & Philip H. S. Torr Proceedings of the 32nd International Conference on Machine Learning, 2015

Presented By: Shriyash Upadhyay

Zero-Shot Learning With Attributes

- Describe classes in terms of attributes
 - The list of attributes is called the signature
- Given a new class with no training examples, classify new examples

Image: Y. Xian, C. H. Lampert, B. Schiele, Z. Akata. "Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly", IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 40(8), 2018

Zero-Shot Learning In Two Parts

- Attribute Learning (Training)
- "Attribute Based Prediction" (Inference)

Zero-Shot Learning In Two Parts

• Attribute Learning (Training)

- Given training instances + attribute signatures for training classes
- Learn to identify the attributes

• "Attribute Based Prediction" (Inference)

	polar bear	
	black:	no
	white:	yes
	brown:	no
\neg	stripes:	no
,	water:	yes
	eats fish:	yes

Image: Y. Xian, C. H. Lampert, B. Schiele, Z. Akata. "Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly", IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 40(8), 2018

Zero-Shot Learning In Two Parts

- Attribute Learning (Training)
- "Attribute Based Prediction" (Inference)
 - Given the attribute signatures for new classes, classify new instances

Image:Y. Xian, C. H. Lampert, B. Schiele, Z. Akata. "Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly", IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 40(8), 2018

5

A Very Simple Zero-Shot Learning Model

- Train a linear model (e.g. logistic regression) for each of the attributes
- Create a second model to predict classes based on the attributes
- This is known as Directed Attribute Prediction (DAP)

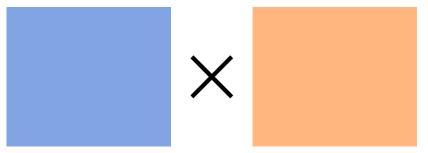
Outline Of The Presentation

Paper's Goal: Improve on DAP by combining the two parts

- 1. How does ESZSL work?
 - a. Trains quickly
 - b. Simple to implement
 - c. Outperforms DAP
- 2. What are the weaknesses of the model?
 - a. Underperforms other models
 - b. More performant variants lose useful properties

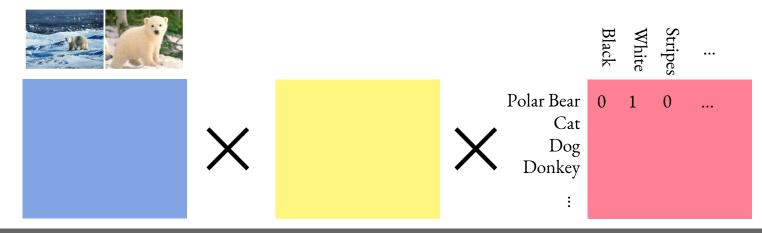
The General Form Of A Linear Layer

$\underset{W \in \mathbb{R}^{d \times z}}{\operatorname{minimize}} L\left(\boldsymbol{X}^{\top}\boldsymbol{W},\boldsymbol{Y}\right) + \Omega\left(\boldsymbol{W}\right)$



The ESZSL Linear Layer

$\underset{V \in \mathbb{R}^{d \times a}}{\operatorname{minimize}} L\left(\boldsymbol{X}^{\top} \boldsymbol{V} \boldsymbol{S}, Y \right) + \Omega\left(V \right)$



How To Use The Model

• We classify an instance x based on a new set of classes S' using $\operatorname{argmax} \overline{x^ op V} S_i'$

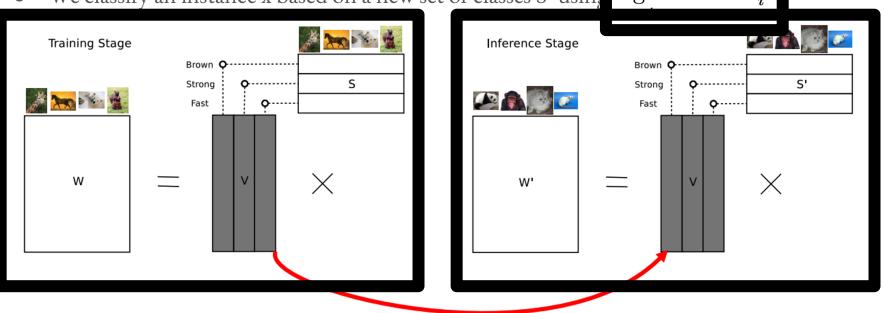


Figure: B. Romera-Paredes, P. Torr. "An Embarrassingly Simple Approach To Zero-Shot Learning", Proceedings of the 32nd International Conference on Machine Learning, 2015

Regularization

$$\Omega\left(V;S,X\right) = \gamma \left\|VS\right\|_{\text{Fro}}^{2} + \lambda \left\|X^{\top}V\right\|_{\text{Fro}}^{2} + \beta \left\|V\right\|_{\text{Fro}}^{2}$$

• Weights shouldn't be too large

Regularization

$$\Omega\left(V;S,X\right) = \gamma \left\|VS\right\|_{\text{Fro}}^{2} + \lambda \left\|X^{\top}V\right\|_{\text{Fro}}^{2} + \beta \left\|V\right\|_{\text{Fro}}^{2}$$

- Weights shouldn't be too large
- All training instances should have a comparable impact on the weight

Regularization

$$\Omega\left(V;S,X\right) = \gamma \left\|VS\right\|_{\text{Fro}}^{2} + \lambda \left\|X^{\top}V\right\|_{\text{Fro}}^{2} + \beta \left\|V\right\|_{\text{Fro}}^{2}$$

- Weights shouldn't be too large
- All training instances should have a comparable impact on the weight
- All signatures should have a comparable impact on the weights

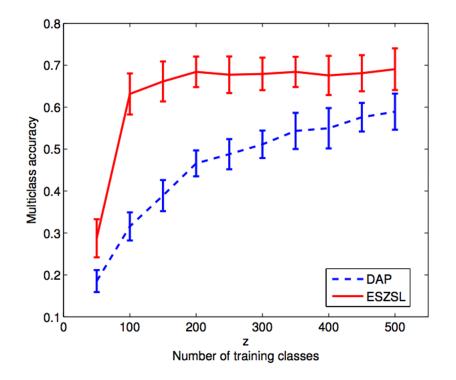
Closed Form Solution

If we let the following be true, the solution is closed form (easy to implement)

- $L(P,Y) = ||P Y||_{\text{Fro}}^2$
- $\beta = \gamma \lambda$

$$V = \left(XX^{\top} + \gamma I\right)^{-1} XYS^{\top} \left(SS^{\top} + \lambda I\right)^{-1}$$

Validation With Synthetic Data



- Create random classes
 - Each class has 100 attributes
 - Attributes are randomly selected to be 0 or 1
- Generate examples for classes
 - 50 examples for each class
 - Each example has dimension of 10 with added gaussian noise
- Goal: see how the number of training classes impacts model performance

Figure: B. Romera-Paredes, P. Torr. "An Embarrassingly Simple Approach To Zero-Shot Learning", Proceedings of the 32nd International Conference on Machine Learning, 2015

Validation With Real Data

- Multiclass classification accuracy on 3 standard datasets
- aPY has a large number of attributes relative to classes
 - ESZSL-AS is a variation of ESZSL used to accommodate this by creating new classes

Method/Dataset	AwA	aPY	SUN
DAP	40.50	18.12	52.50
ESZSL	49.30	15.11	65.75
LOZOL	± 0.21	± 2.24	± 0.51
ESZSL-AS		27.27	61.53
LSZSL-AS	_	± 1.62	± 1.03

Table: B. Romera-Paredes, P. Torr. "An Embarrassingly Simple Approach To Zero-Shot Learning", Proceedings of the 32nd International Conference on Machine Learning, 2015

Comparison With Existing Models

Xian et al., 2018 compares a large number of zero-shot learning models

		SUN			CUB			AWA1			AWA2			aPY	
Method	ts	tr	H	ts	tr	H	ts	tr	Н	ts	tr	Н	ts	tr	H
DAP [1]	4.2	25.1	7.2	1.7	67.9	3.3	0.0	88.7	0.0	0.0	84.7	0.0	4.8	78.3	9.0
IAP [1]	1.0	37.8	1.8	0.2	72.8	0.4	2.1	78.2	4.1	0.9	87.6	1.8	5.7	65.6	10.4
CONSE [15]	6.8	35.9	11.4	2.0	70.6	3.9	0.4	89.6	0.8	0.5	90.6	1.0	0.0	91.2	0.0
CMT [12]	8.1	21.8	11.8	7.2	49.8	12.6	0.9	87.6	1.8	0.5	90.0	1.0	1.4	85.2	2.8
CMT* [12]	8.7	28.0	13.3	4.7	60.1	8.7	8.4	86.9	15.3	8.7	89.0	15.9	10.9	74.2	19.0
SSE [13]	2.1	36.4	4.0	8.5	46.9	14.4	7.0	80.5	12.9	8.1	82.5	14.8	0.3	78.4	0.6
LATEM [11]	14.7	28.8	19.5	15.2	57.3	24.0	7.3	71.7	13.3	11.5	77.3	20.0	1.3	71.4	2.6
ALE [30]	21.8	33.1	26.3	23.7	62.8	34.4	16.8	76.1	27.5		81.8	23.9	4.6	73.7	8.7
DEVISE [7]	16.9	27.4	20.9	23.8	53.0	32.8	13.4	68.7	22.4	17.1	74.7	27.8	3.5	78.4	6.7
SJE [9]	14.4	29.7	19.4	23.5	59.2	33.6	11.3	74.6	19.6	8.0	73.9	14.4	1.3	71.4	2.6
ESZSL [10]	11.0	27.9	15.8	14.7	56.5	23.3	6.6	75.6	12.1	5.9	77.8	11.0	2.4	70.1	4.6
SYNC [14]	7.9	43.3	13.4	11.5	70.9	19.8	9.0	88.9	16.3	9.7	89.7	17.5	7.4	66.3	13.3
SAE [33]	8.8	18.0	11.8	7.8	54.0	13.6	1.8	77.1	3.5	1.1	82.2	2.2	0.4	80.9	0.9
GFZSL [41]	0.0	39.6	0.0	0.0	45.7	0.0	1.8	80.3	3.5	2.5	80.1	4.8	0.0	83.3	0.0

Table: Y. Xian, C. H. Lampert, B. Schiele, Z. Akata. "Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly", IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 40(8), 2018

SJE vs ESZSL

Structured Joint Embeddings (Akata et al., 2015) maps attributes and images to word embeddings

	SUN			CUB			AWA1			AWA2			aPY		
Method	ts	tr	н	ts	tr	H	ts	tr	H	ts	tr	н	ts	tr	H
SJE [9]	14.4	29.7	19.4	23.5	59.2	33.6	11.3	74.6	19.6	8.0	73.9	14.4	1.3	71.4	2.6
ESZSL [10]	11.0	27.9	15.8	14.7	56.5	23.3	6.6	75.6	12.1	5.9	77.8	11.0	2.4	70.1	4.6

Model Introduced: Z. Akata, S. Reed, D. Walter, H. Lee, B. Schiele. "Evaluation Of Output Embeddings for Fine-Grained Image Classification", 2015

Potential Variations On This Model

- Introduce non-linearities
- Introduce more layers
- This might improve performance
 - Trains more slowly
 - More complicated to implement

Summary

- ESZSL has the following benefits
 - Convex (trains efficiently)
 - Closed form (simple to implement)
 - Better performance than DAP
- The specifics of the method are too simple to remain useful
 - Lower performance than contemporary and subsequent methods
 - \circ $\;$ However, the core idea of making weights a function of the signature is compelling

References

[1] B. Romera-Paredes, P. Torr. "An Embarrassingly Simple Approach To Zero-Shot Learning", Proceedings of the 32nd International Conference on Machine Learning, 2015

[2] Y. Xian, C. H. Lampert, B. Schiele, Z. Akata. "Zero-Shot Learning - A Comprehensive Evaluation of the Good, the Bad and the Ugly", IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 40(8), 2018. (arXiv:1707.00600 [cs.CV])

[3] Z. Akata, S. Reed, D. Walter, H. Lee, B. Schiele. "Evaluation Of Output Embeddings for Fine-Grained Image Classification", 2015

Appendix On Transfer Learning & Domain Adaptation

Transfer Learning & Domain Adaptation

- Transfer Learning
 - Similar to zero-shot learning, but the information about the new task is given in the form of labeled instances
- Domain Adaptation
 - Trying to learn the same thing from two different types of data
 - E.g. training a autonomous vehicle in San Francisco and then getting it to work in Hong Kong

ESZSL & Domain Adaptation

- If we look at the outer product space of the instances and the signatures, this becomes a domain adaptation problem
 - There is no good visualization of this
 - There is no good intuitive reason to do this
- We can then apply tools from the study of domain adaptation to this method
- I omit discussion of these results because they are not practically applicable
 - The bounds do not apply to variants of this model
 - The specific cases on the bounds which are analyzed are very simple (i.e. if the distributions are unrelated, our model cannot do better than random; if the distributions are identical, we can have a perfect classifier)
 - The bounds require knowledge of the underlying distribution from which we are drawing our data
 - No other papers I found appear to use this method in order to compute bounds, even in other compatibility learning methods