
Zero-Shot Relation Extraction via Reading 
Comprehension

OMER LEVY, MINJOON SEO, EUNSOL CHOI, AND LUKE 
ZETTLEMOYER

PUBLISHED IN THE PROCEEDINGS OF THE 21ST

CONFERENCE ON COMPUTATIONAL NATURAL LANGUAGE 
LEARNING (CONLL 2017),  AUGUST 2017. 

PRESENTER: KEVIN XIE

1



Zero-Shot Relation 
Extraction via Reading 
Comprehension
WHAT IS RELATION EXTRACTION?
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A relation connects an entity to a concept
in unstructured text
Sentence s: “Barack Obama ran for president in 2008 with Joe Biden as his running 
mate.”
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A relation connects an entity to a concept
in unstructured text
Sentence s: “Barack Obama ran for president in 2008 with Joe Biden as his running 
mate.”

Relation R: Election_Year

Entity e: Barack Obama

Concept a: 2008
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A relation connects an entity to a concept
in unstructured text
Sentence s: “Barack Obama ran for president in 2008 with Joe Biden as his running 
mate.”

Relation R: Election_Year

Entity e: Barack Obama

Concept a: 2008

Functionally: Given s, R(e, a). 
◦ Election_Year(Barack Obama, 2008)
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Relation Extraction (RE) tries to construct R(e, a)
given s and some combination of  R, e, a

Sentence s: “Barack Obama ran for president in 2008 with Joe Biden as his running 
mate.”
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Sounds like 
Multi-class 

classification!

Classic ML with Feature Extraction:
• Zelenko et al. 2002: Kernel methods for RE
• Jiang and Zhai 2007: Feature spaces for RE

DL RE
• Lin et al. 2016: CNN-based embeddings with 

Sentence-level Attention

Jiang, Jing, and ChengXiang Zhai. “A Systematic Exploration of the Feature Space for Relation Extraction.” Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, Association for Computational Linguistics, 2007, pp. 113–20. ACLWeb, 
https://www.aclweb.org/anthology/N07-1015.
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Relation Extraction (RE) tries to construct R(e, a)
given s and some combination of  R, e, a

Sentence s: “Barack Obama ran for president in 2008 with Joe Biden as his running 
mate.”

Traditionally: Given e, a, and �𝐑𝐑 = 𝐑𝐑𝟏𝟏,𝐑𝐑𝟐𝟐, …𝐑𝐑𝐍𝐍 . Map(e, a)  𝐑𝐑 ∈ �𝐑𝐑
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◦ N is typically small
◦ Zelenko et al. 2002: N = 2 (Binary Classification)

◦ Lin et al. 2016: N = 52 + 1 NA
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Relation Extraction (RE) tries to construct R(e, a)
given s and some combination of  R, e, a

Sentence s: “Barack Obama ran for president in 2008 with Joe Biden as his running 
mate.”

Traditionally: Given e, a, and �𝐑𝐑 = 𝐑𝐑𝟏𝟏,𝐑𝐑𝟐𝟐, …𝐑𝐑𝐍𝐍 . Map(e, a)  𝐑𝐑 ∈ �𝐑𝐑
◦ e: Barrack Obama, a: 2008  R: Election_Year
◦ N is typically small
◦ Zelenko et al. 2002: N = 2 (Binary Classification)

◦ Lin et al. 2016: N = 52 + 1 NA

Levy et al: Given 𝐑𝐑 ∈ �𝐑𝐑, and e. Map(R, e)  a
◦ N = 120
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Levy et al. tries to identify a (the “answer”) 
in R(e, a) given s
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”
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Levy et al. tries to identify a (the “answer”) 
in R(e, a) given s
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

Running_Mate(Barack Obama, a)  a = Joe Biden

Office(Barack Obama, a)  a = president

Spouse(Barack Obama, a)  ?
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Levy et al. tries to identify a (the “answer”) 
in R(e, a) given s
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

Running_Mate(Barack Obama, a)  a = Joe Biden

Office(Barack Obama, a)  a = president

Spouse(Barack Obama, a)  a = N/A
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Zero-Shot Relation 
Extraction via Reading 
Comprehension
WHAT IS ZERO-SHOT RELATION EXTRACTION?
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Zero-shot RE “defines new relations ‘on the 
fly’, after the model has already been trained”

Suppose model M is trained on N relation types, 
forming training set �RN. 
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Zero-shot RE “defines new relations ‘on the 
fly’, after the model has already been trained”

Suppose model M is trained on N relation types, 
forming training set �RN. 

How does M perform on a new, unseen type RN+1?
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Zero-shot RE presents new relation types 
at test time
Suppose M was trained on s: “Barack Obama ran for president in 2008 with Joe 
Biden as his running mate.”

The training set included the following R(e, ?):
◦ Running_Mate(Barack Obama, a)  a = Joe Biden
◦ Office(Barack Obama, a)  a = president
◦ Spouse(Barack Obama, a)  a = N/A
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Zero-shot RE presents new relation types 
at test time
Suppose M was trained on s: “Barack Obama ran for president in 2008 with Joe 
Biden as his running mate.”

The training set included the following R(e, ?): 
◦ Running_Mate(Barack Obama, a)  a = Joe Biden
◦ Office(Barack Obama, a)  a = president
◦ Spouse(Barack Obama, a)  a = N/A

The zero-shot test set could include:
◦ Action(Barack Obama, a)  a = ran for president
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Why do we want zero-shot RE?
There are potentially infinite sentences, each with their own 
different R(e, a)
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Why do we want zero-shot RE?
There are potentially infinite sentences, each with their own 
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Why do we want zero-shot RE?
There are potentially infinite sentences, each with their own 
different R(e, a)

It is impossible to annotate them all for supervised 
training/testing

Any model that is useable in the real-world must be able to 
generalize to unseen examples
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Zero-Shot Relation 
Extraction via Reading 
Comprehension
HOW DOES READING COMPREHENSION FACTOR INTO 
ZERO-SHOT RELATION EXTRACTION?
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Reading Comprehension is Question-
Answering (QA) of  (unstructured) text
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”
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A = {“Joe Biden”, “President”, “N/A”}
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Reading Comprehension is Question-
Answering (QA) of  (unstructured) text
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

Q = {“Who was Obama’s running mate?”,  “What did Obama run for in 2008?”, 
“Who is Obama’s Spouse?”}

A = {“Joe Biden”, “President”, “N/A”}

Hmm, these 
answers seem 

familiar…
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Levy et al. tries to identify a (the “answer”) 
in R(e, a) given s
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

Running_Mate(Barack Obama, a)  a = Joe Biden

Office(Barack Obama, a)  a = president

Spouse(Barack Obama, a)  a = N/A
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RE can be a QA problem!
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

RE:
◦ Running_Mate(Barack Obama, a)  a = Joe Biden
◦ Office(Barack Obama, a)  a = president
◦ Spouse(Barack Obama, a)  a = N/A

QA:
◦ Q = {“Who was Obama’s running mate?”,  “What did Obama run for in 2008?”, 

“Who is Obama’s Spouse?”}
◦ A = {“Joe Biden”, “President”, “N/A”}
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Formulating RE under the 
Reading Comprehension 
paradigm
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Levy et al. created question sets for 
relations
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”
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Levy et al. created question sets for 
relations
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

Running_Mate(Barack Obama, a)  a = Joe Biden
◦ Who did Barack Obama run with in 2008?
◦ Who was Barack Obama’s running mate in 2008?
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Levy et al. created question sets for 
relations
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

Running_Mate(Barack Obama, a) a = Joe Biden
◦ Who did Barack Obama run with in 2008?
◦ Who was Barack Obama’s running mate in 2008?

Office(Barack Obama, a)  a = President
◦ What did Barack Obama run for in 2008?
◦ For which office did Barack Obama run for?
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Making specific questions for relations is expensive. 
Templates can reduce the cost
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Creating question templates 
(“Querifying”) was crowd-sourced
Annotators were presented with masked example sentences
◦ “x ran for president in 2008 with Joe Biden as his running mate”

38



Creating question templates 
(“Querifying”) was crowd-sourced
Annotators were presented with masked example sentences
◦ “x ran for president in 2008 with Joe Biden as his running mate”

Possible answers a for some relation R(x, a) were underlined
◦ “x ran for president in 2008 with Joe Biden as his running mate”

39



Creating question templates 
(“Querifying”) was crowd-sourced
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Creating question templates 
(“Querifying”) was crowd-sourced
Annotators were presented with masked example sentences
◦ “x ran for president in 2008 with Joe Biden as his running mate”

Possible answers a for some relation R(x, a) were underlined
◦ “x ran for president in 2008 with Joe Biden as his running mate”

Annotators create questions about entity x with answer a. 
◦ “Who was x’s running mate?”

In total, 1192 templates across 120 relations
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Negative examples must be accounted for 
in training and testing
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”
◦ Spouse(Barack Obama, a)  a = N/A
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Negative examples must be accounted for 
in training and testing
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”
◦ Spouse(Barack Obama, a)  a = N/A

Solution: mismatch a question q for one relation with a sentence s that expresses 
another relation
◦ Who is Barack Obama’s spouse? 
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Performing RE with 
Reading Comprehension
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Levy et al. used BiDAF (Seo et al. 2016) to 
identify answer spans
BiDAF returns confidence scores for each potential start and end of  an answer

s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

q: “Who was Barack Obama’s running mate?”

Barack Obama Ran For President In 2008 With Joe Biden As His Running Mate

Start 6 4 1 2 1 3 2 1 10 6 2 1 3 1

End 2 7 1 3 2 2 1 2 4 10 2 2 1 3

*Values here are for illustration only. They were arbitrarily set and do not reflect any data

Seo, Minjoon, et al. “Bidirectional Attention Flow for Machine Comprehension.” ArXiv:1611.01603 [Cs], June 2018. arXiv.org, http://arxiv.org/abs/1611.01603.45



Confidence scores can be transformed 
into pseudo-probabilities
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

q: “Who was Barack Obama’s running mate?”

Barack Obama Ran For President In 2008 With Joe Biden As His Running Mate

P(start) 0.22 0.1 0.01 0.02 0.01 0.04 0.02 0.01 0.4 0.22 0.02 0.01 0.045 0.01

P(end) 0.02 0.31 0.01 0.05 0.02 0.02 0.01 0.02 0.08 0.4 0.02 0.02 0.01 0.05

*Values here are for illustration only. They were arbitrarily set and do not reflect any data
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Trained bias b is used to indicate 
confidence of  no answer
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

q: “Who was Barack Obama’s running mate?”

Barack Obama Ran For President In 2008 With Joe Biden As His Running Mate b

P(start) 0.22 0.1 0.01 0.02 0.01 0.04 0.02 0.01 0.4 0.22 0.02 0.01 0.045 0.01 0.12

P(end) 0.02 0.31 0.01 0.05 0.02 0.02 0.01 0.02 0.08 0.4 0.02 0.02 0.01 0.05 0.16
*Values here are for illustration only. They were arbitrarily set and do not reflect any data
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Pick the span of  text with largest 
probability as the answer
s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”

q: “Who was Barack Obama’s running mate?”

𝑃𝑃(𝒂𝒂 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗)) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑃𝑃 𝑒𝑒𝑠𝑠𝑒𝑒 )
𝑃𝑃 𝒂𝒂 = ∅ = 𝑃𝑃 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑃𝑃(𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒)

Barack Obama Ran For President In 2008 With Joe Biden As His Running Mate b

P(start) 0.22 0.1 0.01 0.02 0.01 0.04 0.02 0.01 0.4 0.22 0.02 0.01 0.045 0.01 0.12

P(end) 0.02 0.31 0.01 0.05 0.02 0.02 0.01 0.02 0.08 0.4 0.02 0.02 0.01 0.05 0.16

*Values here are for illustration only. They were arbitrarily set and do not reflect any data
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Experimental 
Results
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Levy et al. variations of  RE by QA models
Single Template: only one 𝐪𝐪 ∈ 𝐐𝐐𝐑𝐑 is used for that R
◦ q = “Who is X’s running mate?” for all cases where R = running_mate appears
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Multiple Templates: any 𝐪𝐪 ∈ 𝐐𝐐𝐑𝐑 is used for that R
◦ q = “Who is X’s running mate?” or q = “Who ran with X?” for cases where R = running_mate

appears. 
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Levy et al. variations of  RE by QA models
Single Template: only one 𝐪𝐪 ∈ 𝐐𝐐𝐑𝐑 is used for that R
◦ q = “Who is X’s running mate?” for all cases where R = running_mate appears

Multiple Templates: any 𝐪𝐪 ∈ 𝐐𝐐𝐑𝐑 is used for that R
◦ q = “Who is X’s running mate?” or q = “Who ran with X?” for cases where R = running_mate

appears. 

Question Ensemble: multiple 𝐪𝐪 ∈ 𝐐𝐐𝐑𝐑 is used for that R
◦ Both q = “Who is X’s running mate?” and q = “Who ran with X?” for cases where R = 

running_mate appears. 
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Comparing RE by QA with other models
Knowledge-base relation: Relation indicators (R13) instead of  questions

Natural Language relation: Relation names (running_mate) instead of  questions

Random baseline: chooses random entity in sentence that is not in questions

Hewlett et al. 2016: RNN Labeler

Miwa and Bansal 2016: Relation Extractor
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How does RE by QA perform on unseen 
entities?

Partition dataset along entities in questions
◦ Barack Obama in training only
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate” 
◦ q: Who was Barack Obama’s Running mate?

◦ FDR in testing only
◦ s’: “Roosevelt was elected president in 1933 during the Great Depression”
◦ q’: “What year was Roosevelt elected?”
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How does RE by QA perform on unseen 
entities?

Partition dataset along entities in question
◦ Barack Obama in training only
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate” 
◦ q: Who was Barack Obama’s Running mate?

◦ FDR in testing only
◦ s’: “Roosevelt was elected president in 1933 during the Great Depression”
◦ q’: “What year was Roosevelt elected?”

Sample 1M/1K/10K examples for Train/Dev/Test split
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RE by QA performs 
well on unseen entities 
relative to competitors

RE by QA generalizes well 
when new entities are 
introduced for old relations
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How does RE by QA perform on new 
templates (new questions)?

10 folds of train/dev/test with one question template for each relation 
held out for test set, and another for dev set
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate” 
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How does ER by QA perform on new 
templates (new questions)?

10 folds of train/dev/test with one question template for each relation 
held out for test set, and another for dev set
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate” 

◦qtrain: “Who was Barack Obama’s running mate?”
◦qtest: “Who ran with Barack Obama?”
◦qdev: “What was Barack Obama’s running mate’s name?”
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How does ER by QA perform on new 
templates (new questions)?
10 folds of train/dev/test with one question template for each relation 
held out for test set, and another for dev set
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate” 
◦qtrain: “Who was Barack Obama’s running mate?”
◦qtest: “Who ran with Barack Obama?”
◦qdev: “What was Barack Obama’s running mate’s name?”

Sample N = 1K/10/50 examples per question template for 
train/dev/test
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RE by QA 
generalizes to 
new templates

RE by QA experiences 
small performance 
decrease when new 
questions are asked for 
old relations
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How does RE by QA perform on new, 
unseen relations (pure zero-shot)? 

10 folds of train/dev/test partitioned along relations 
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate” 
◦ Rtrain: running_mate(Barack Obama, a)
◦ Rtest: election_year(Barack Obama, a)
◦ Rdev: office(Barack Obama, a)
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How does RE by QA perform on new, 
unseen relations (pure zero-shot)? 

10 folds of train/dev/test partitioned along relations 
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate” 
◦ Rtrain: running_mate(Barack Obama, a)
◦ Rtest: election_year(Barack Obama, a)
◦ Rdev: office(Barack Obama, a)

Partition 84/12/24 relations for train/dev/test 
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RE by QA beats 
competitors at pure 
zero-shot testing

RE by QA experiences 
significant decrease in 
performance on new 
relations, but is better 
than its competitors
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RE by QA is affected by distractors in 
negative examples
Suppose the following R(e, a) problem:
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”
◦ q: “Who is Barack Obama married to?” 
◦ Correct a: N/A
◦ Distractor a’: Joe Biden
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RE by QA is affected by distractors in 
negative examples
Suppose the following R(e, a) problem:
◦ s: “Barack Obama ran for president in 2008 with Joe Biden as his running mate.”
◦ q: “Who is Barack Obama married to?” 
◦ Correct a: N/A
◦ Distractor a’: Joe Biden

Analysis of random (negative) examples found:
◦ 35% contain distractors
◦ 1/7 error rate on negative examples with distractors
◦ 1/26 error rate on easier negative examples
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Thoughts and 
Conclusions
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RE by QA seems neat, but…
Question (Template) generation requires manual effort, and there are 
more questions than there are relations
◦ Expensive to create large (template) datasets  poor scalability
◦ Cannot be easily translated to other languages  no improvement in low 

resource languages
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RE by QA seems neat, but…
Question (Template) generation requires manual effort, and there are 
more questions than there are relations
◦ Expensive to create large (template) datasets  poor scalability
◦ Cannot be easily translated to other languages  no improvement in low 

resource languages

RE by QA model performed well only relative to compared models
◦ ~40% F1 is far from human performance

68



Also, 
What is the agreement between annotators, or a measure of 
crowdsourced validity?
◦ Authors only report that most question templates were unique
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Also, 
What is the agreement between annotators, or a measure of 
crowdsourced validity?
◦ Authors only report that most question templates were unique

Would newer models work better (i.e. BERT)?
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Could automated question generation 
help?

Templates reduce the cost of generating questions for each relation, but 
it still costs annotator time and annotator knowledge

Pampari et al. 2018: algorithm for automated, large-scale (medical) QA 
dataset generation
◦ Extremely repetitive question sets (many questions had minimal variation)
◦ Personal experiments found repetitive questions unhelpful

Automated question generation could increase size of supervised data

Pampari, Anusri, et al. “EmrQA: A Large Corpus for Question Answering on Electronic Medical Records.” ArXiv:1809.00732 [Cs], Sept. 2018. arXiv.org, 
http://arxiv.org/abs/1809.00732. 71



To summarize, 
Levy and colleagues contributed towards Zero-Shot Relation Extraction.

They framed Relation Extraction as a Reading Comprehension problem

Under this paradigm, a RE model performed well compared to other RE models in 
a zero-shot learning task 

RE as QA still has short comings
◦ Expensive datasets
◦ Inferior compared to humans
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Questions?
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In positive examples, 
different types of  cues 
can be seen

Relation: Solution by matching 
relation to question
Type: Solution relies on answer 
type
Verbatim: question appears in 
text
Global: phrasing in text differs 
from that in question
Specific: phrasing in text 
differs uniquely for a question
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RE by QA is affected by 
types of  cues

Model’s ability to generalize uses “global type 
detection” and “relation paraphrase 
detection”
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