Learning Dependency-Based Compositional Semantics

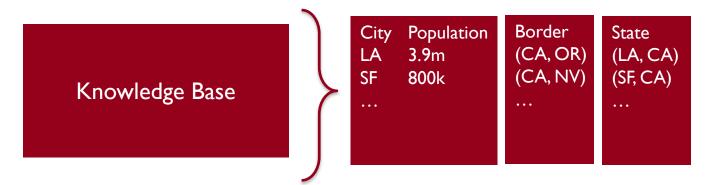
Percy Liang, Michael I. Jordan and Dan Klein

Human Language Technology (HLT) 2011

Krunal Shah (shahkr@seas.upenn.edu) 8th January 2021

Question Answering

Simple enough f @ Google using webpages!



Which is the largest city in the states bordering California?

Łog₩@rogram for given KB:

Blogenaix({c: city(c) ^ s.state(s) ^ loc(c, s) ^ border(s, CA)}, population)

Simple annoughtifon Sy computer!

3

Which is the largest city in the states bordering California?

```
Latent logic program:
```

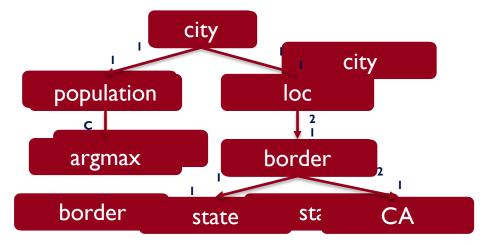
argmax({c: city(c) ^ s.state(s) ^ loc(c, s) ^ border(s, CA)}, population)
argmax({c: city(c) ^ s.state(s) ^ border(s, CA)}, population)
argmax({c: city(c) ^ s.state(s) ^ loc(c, CA)}, population)

Answer:

Phoenix

From the huge space, generate program

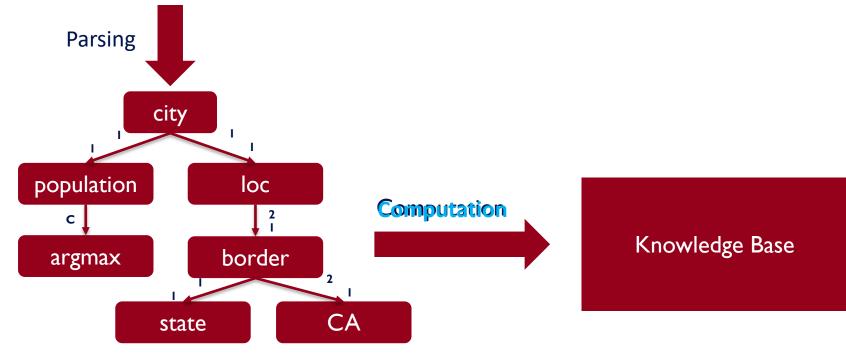
- Executes to correct answer
- Syntactically correct (type constraints)
 And use it to supervise

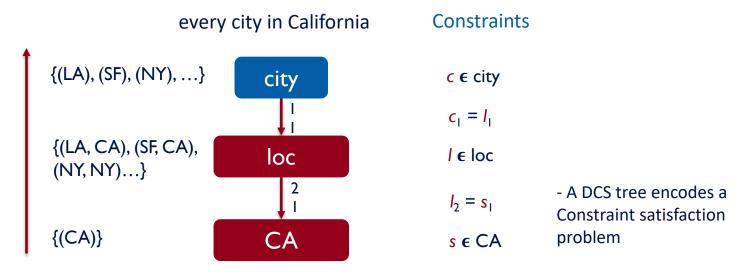


Key idea

- Formulate a logic form with tree representation called Dependency based
 Compositional Semantics (DCS) such that
- The DCS representation looks like syntactic dependency tree, to facilitate learning

Question: Which is the largest city in a state bordering California?

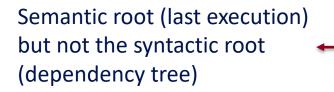

ajgnax (opaja) (c, s) tate, bognax(s, CA), population)


Overview

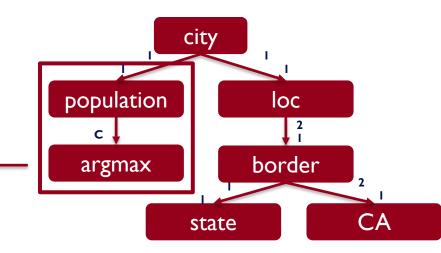
Question: Which is the largest city in a state bordering California?

- Supports join and aggregate operators
- Designed for cases with correlated semantic and syntactic scopes

Penn Engineering

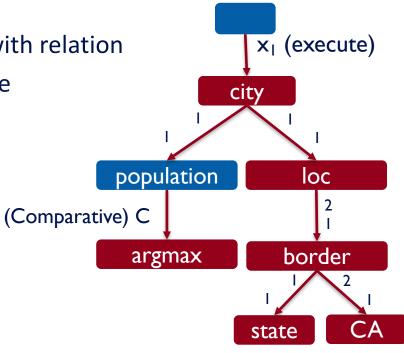

* example from Liang et al. 2011

7


- Semantic and syntactic scope diverge in examples of quantification, extraction, comparison, etc.

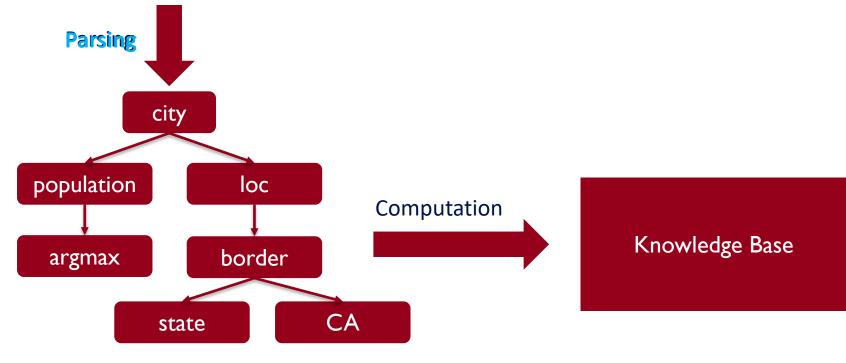
Question: Which is the largest city in a state bordering California?

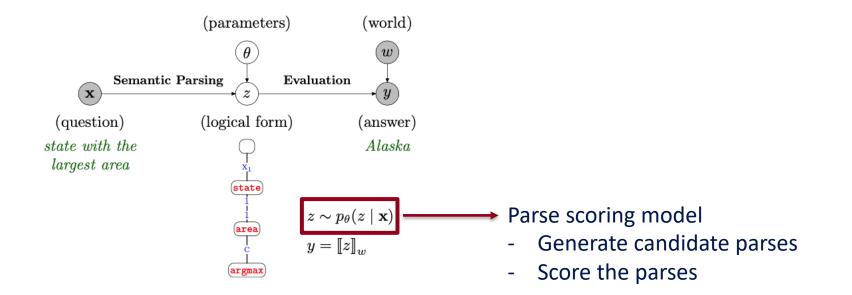
argmax({c: city(c) ^ s.state(s) ^ loc(c, s) ^ border(s, CA)}, population)



enn Engineering

Full DCS

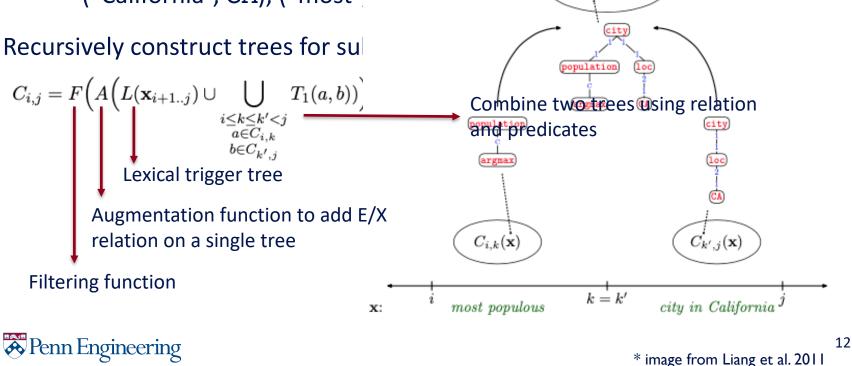

- Additionally supports extract, quantify and compare operators
- Mark-Execute:
 - mark at syntactic scope with relation
 - execute at semantic scope



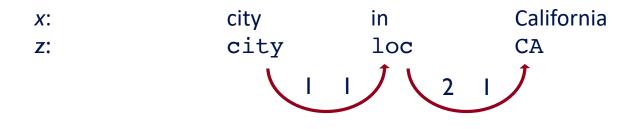
Overview

Question: Which is the largest city in a state bordering California?

Graphical Model



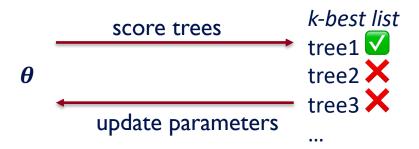
Generate parse space



- ("California", CA), ("most"

 $C_{i,j}(\mathbf{x})$

Log linear scoring model


- features(x, z) = (in...loc, city-1-1-loc, ...) ϵ R^d
- $score(x, z) = features(x, z) \cdot \theta$
- $p(z | x, \theta) = \frac{e^{score(x, z)}}{\Sigma_{z' \in \mathbb{Z}(x)}} e^{score(x, z')}$

EM style learning:

Results

System	GEO	S
Clarke et al. (2010) w/answers	73.2	
Clarke et al. (2010) w/logical forms	80.4	
Our system (DCS with L)	78.9	
Our system (DCS with L^+)	87.2	

System	Geo	Jobs
Tang and Mooney (2001)	79.4	79.8
Wong and Mooney (2007)	86.6	-
Zettlemoyer and Collins (2005)	79.3	79.3
Zettlemoyer and Collins (2007)	81.6	-
Kwiatkowski et al. (2010)	88.2	-
Kwiatkowski et al. (2010)	88.9	_
Our system (DCS with L)	88.6	91.4
Our system (DCS with L^+)	91.1	95.0

Specialized lexicon

Logical forms

+ Logical forms

+ Specialized lexicon

Observations

- Supervision compared to Clark et al.:
 - Use a smaller lexicon
 - Use POS tags vs dependency trees
 - Use simple indicator features vs WordNet features
- Assumptions (impact generalization):
 - Lexicon is general purpose but needs to be exhaustive
 - Indicator features would generalize well
 - DCS space restricted by lexicon and beam search
 - DCS:
 - Expressive enough
 - Efficiently executed over any KB
- ✓ Baked inductive bias towards syntactic structure

Contributions

- Present a new semantic framework DCS
 - Expressive
 - Computationally efficient
 - Well motivated to counter lambda calculus
- Show amazing results with simple, cheap e2e supervision

About the paper:

- + Beautiful idea, well executed
- + Build a nicely presented logical framework
- + Cheaply supervised, beats highly supervised methods
- Very complicated framework

- Semantic Parsing is a fundamental roadblock to NLU
- Need more developments in building more elegant and richer logical frameworks

References

- Highly influenced by Percy Liang's talk on YouTube at Learning Semantics Workshop at NIPS 2011.
- Learning Dependency-Based Compositional Semantics. Liang, Percy and Jordan, Michael I. and Klein, Dan. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies 2011.
- 3. Learning Dependency-Based Compositional Semantics. Liang, Percy and Jordan, Michael I. and Klein, Dan. Computational Linguistics 2013.

