

Learning to Compose Neural Networks for Question Answering

Paper by J. Andreas, M. Rohrbach, T. Darrell & D. Klein, 2016 Presented by Kaifu Wang

February 19, 2020

イロト イボト イヨト イヨト

VQA: Q: How many children are in the bed?

GeoQA: Q: How many states are in the United States?

 $[\![\texttt{\#states(USA)}]\!]_{\mathcal{W}_{1776}} = 13 \quad [\![\texttt{\#states(USA)}]\!]_{\mathcal{W}_{2020}} = 50$

Goal: build a model for $\mathbb{P}(y|x, w)$ that can answer questions x based on a variety of *world representations* w which encodes external knowledge and observations, such as knowledge bases and images.

Task: given question x and world representation w, predict $\mathbb{P}(y|x,w)$.

- Approach 1: Learning encodings for x and w, and build a classifier for [x; w].
 - Hard to interpret the models.
 - Sentence embedding may not capture linguistic complexity.
- Approach 2: Map questions to logical forms. For example: question Which state has the largest area can be mapped to the following logical form of the world representation: argmax(area(state())).
 - It can be hard to deal with visual features in purely logical rules.
 - May require combinatorial optimization.

イロン イヨン イヨン イヨン

Model: Dynamic Neural Module Network

Model: $x \to z \to y \leftarrow w$

э

イロン イヨン イヨン -

Given the layout z, the NN is assembled using the following modules:

Module	Input	Output	Example (Arguments, <i>inputs</i>)	
Lookup	World	Attention	Find "Georgia" in the database	
Find	World	Attention	Find the bird in the <i>picture</i>	
Relate	Attention	Attention	Which cities are in <i>Pennsylvania</i> ?	
And	Attentions	Attention	Find sheep's ear	
Describe	Attention	Labels	What is the color ?	
Exists	Attention	Labels	Are there any cities ?	

Arguments are provided by z, while *inputs* are the information flow of w. These modules are shallow NNs with trainable parameters. For example,

$$\llbracket \texttt{find}_{[\texttt{bird}]} \rrbracket = \text{Softmax}(a \odot \sigma(Bv^{\texttt{bird}} \oplus CW \oplus d))$$

A reasonable parsing for question "What color is the bird?" can be

describe[color](find[bird]())

ヘロト ヘロト ヘビト ヘビト

Construct Candidate Set of Layouts

Candidate set of the layout $\{z_1, z_2 \dots, z_n\}$ is constructed by:

- Find dependency parse of x.
- Collect all nouns, verbs, prepositional phrases attached directly to a wh-word or copula.
- Map each of these words/phrases to a fragment of module(s) using hand-written rule.
- For each subset of these fragments, construct a layout candidate by joining all modules with an And module, and insert a Describe or Measure module at the top.

< ロ > < 同 > < 三 > < 三 >

For $z \in \{z_1, \ldots, z_n\}$, $\mathbb{P}(z|x; \theta_\ell)$ is modeled as a shallow NN:

Here, the layout feature vector includes indicators on the number of modules of each type present, and their associated parameter arguments.

The complete model $\mathbb{P}(y|x,w)$ is now well-defined. However,

- Computing the execution model $\mathbb{P}(y|z,w;\theta_e)$ is expensive.
- Computing the layout model $\mathbb{P}(z|x;\theta_{\ell})$ is relatively cheaper.

Analogy to RL: viewing z as actions and the likelihood of y as reward.

- Sample a layout z according to $\mathbb{P}(z|x;\theta_{\ell})$.
- **2** Update θ_e by ordinary back-propagation.
- Update θ_{ℓ} along the gradient of reward function, which is computed according to the REINFORCE rule:

$$\nabla J_k(\theta_\ell) = \mathbb{E}_y[(\nabla \log \mathbb{P}(z|x;\theta_\ell)) \cdot \underbrace{\log \mathbb{P}(y|z,w;\theta_e)}_{\text{reward}}]$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Experiment: VQA

test-std

A11

55.9

57.4

55.1

_

58.0

VQA tasks

Results

35.0

37.2

37.2

37.1

37.4

test-dev

Other

42.6 55.7

41.7 57.2

39.3 54.8

42.8 57.3

43.1

A11

57.9

N2NMN

N2NMN: R. Hu, et al., *Learning to Reason: End-to-End Module Networks for Visual Question Answering.* in ICCV, 2017.

- Use attentional modules where hard-coded arguments are replaced by soft attention over question words v_i : $x_{txt}^{(m)} = \sum_{i=1} \alpha_i^{(m)} v_i$.
- Layout policy:
 - Search in the space of all possible layouts, rather than in a finite candidate set.
 - Express the layout as a linear sequence of module tokens using the *Reverse Polish Notation*, so the layout prediction becomes a seq2seq problem. One can use a encoder-decoder model for prediction.

イロト イボト イヨト イヨト

N2NMN

- Apart from end-to-end training, pre-train the layout model by **behavioral cloning from expert polices**: use an expert polict $\mathbb{P}_e(z|x)$ to directly supervise and initialize the layout model.
- VQA experiment result:

Method	Visual feature	Accuracy
NMN [3]	LRCN VGG-16	57.3
D-NMN [2]	LRCN VGG-16	57.9
MCB [9]	ResNet-152	64.7
ours - cloning expert	LRCN VGG-16	61.9
ours - cloning expert	ResNet-152	64.2
ours - policy search after cloning	ResNet-152	64.9

• New datasets: SHAPES and CLEVR.

How many other things are of the same size as the green matte ball?

イロト イポト イヨト イヨト

- NMN for QA: N. Gupta et al., *Neural Module Network for Reasoning over Text.* in ICLR, 2020.
- NMN for proving: T. Rocktaschel and S. Riedel, *End-to-End Differentiable Proving*. in NIPS, 2017.

Thank you!

Questions?

13

æ

・ロ・・ 日・ ・ 日・ ・ 日・