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Problem & Motivation 

• Elementary-Science Exam QA
– Challenges in knowledge acquisition & reasoning 
– Automatically extracted knowledge (scalable, noisy, 

incomplete)
– Reasoning mechanism to handle uncertainty

• E.g.
Knowledge: gravity pulls objects towards the Earth

Question: which force is responsible for a ball to drop?
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Problem & Motivation 

• Input ( k multiple choices as T/F)
– Knowledge base / Rules KB (textual resources) 
– Setup S (known facts)
– Question Choices Q (k choices)

• S: A fox grows thick fur as the season changes.
• Q: This helps the fox to (A) hide from danger (B) attract a mate (C) find food (D) keep warm?

• Output (most likely answer as inference)
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Progress to Date:

• Probabilistic logic [Nilsson, 1986]
• Statistics and beliefs [Halpern, 1990]
• Knowledge-based model construction [Wellman et al., 

1992]
• Stochastic logic programs [Muggleton, 1996]
• Probabilistic relational models [Friedman et al., 1999]
• Relational Markov networks [Taskar et al., 2002]
• ...
• this paper: Markov Logic Network
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Contents:

• First Order Logic
• Markov Logic Network
• Probabilistic Formulations

• First-Order MLN (attempt 1)
• Entity Resolution MLN (attempt 2)
• Praline MLN (best attempt)

• Results
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First Order Logic

• Constants, variables, functions, predicates
E.g. : Anna, x, MotherOf(x), Friends(x,y)

• Grounding: Replace all variables by constants
E.g. : Friends (Anna, Bob)

• World (model, interpretation):
Assignment of truth values to all ground predicates
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Markov Network

• Undirected graphical models

• Cliques with weights/potential functions
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Markov Logic

• Syntax: Weighted first-order formulas

• Semantics: Templates for Markov network 
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Markov Logic Network

• Syntax: Weighted first-order formulas
• Semantics: Templates for Markov nets 
• Example

Knowledge: gravity pulls objects towards the Earth

Question: which force is responsible for a ball to drop?
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Contents:

• First Order Logic
• Markov Logic Network
• Probabilistic Formulations
• First-Order MLN (attempt 1)
• Entity Resolution MLN (attempt 2)
• Praline MLN (best attempt)

• Results
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Probablistic Formulations

• Rule Representation:
• “Growing thicker fur in winter helps some animals to stay warm”

• Question Representation: 
• Setup:  A fox grows thick fur as the season changes.
• Choices:  This helps the fox to (A) hide from danger (B) attract a mate (C) find food (D) 

keep warm?
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First Order MLN

• QA task of Pr[Qi| S, R] as an MLN program M
– add R essentially verbatim as first-order rules in M

– Predicates of M: ones in R and entails predicate : “thick fur” & “thicker fur”  “fox” & 
“some animals”

– Evidence: 
– Soft evidence for M consists of entails relations between every ordered pair of entity (or event). Hard evidence for M 

comprises of grounded atoms in S.

– Query: The query atom in M is result(). We are interested in computing Pr[result() = true].

– Semantic Rules: rules that capture the intended meaning of our predicates, such as every event has a unique 

agent, cause(x, y) →effect(y, x)

– DrawBack:Computationally ineffcient, large grounded network



17

Entity Resolution MLN

• Prototypical entity/event constants
– String constants instead of first order variables

– Previously

– Equivalence or Resolution Rules: sameAs predicate
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Entity Resolution MLN

– Partial Match Rules:

– Drawbacks: the entailment-based clusters of constants always behave similarly

– fail on questions that have distinct entities with similar string 
representations 

(e.g. two distinct plants in a question would map to the same entity). 
– fails to apply valid rules in the presence of syntactic differences
agent(Fall, Things) generated by “things fall due to gravity” and 
object(Dropped, Ball) for “a student dropped a ball”. 
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PRobabilistic ALignment and INferencE

• Controlled Inference Given KB
• Acyclic Inference, False Unless Proven
• predicate holds : a unary predicate over string constatns
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PRobabilistic ALignment and INferencE

• Graph Alignment Rules:

• Inference Rules
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PRobabilistic ALignment and INferencE

blue: setup; 
green:query; 
orange:antecedent;
purple:consequent;
dotted lines: alignments. 
lhsHolds combines individual probabilities of antecedent nodes and 
rhsHolds captures the probability of the consequent.
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Contents:

• First Order Logic
• Markov Logic Network
• Probabilistic Formulations

• First-Order MLN (attempt 1)
• Entity Resolution MLN (attempt 2)
• Praline MLN (best attempt)

• Contributions & Results
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Results and Analysis 

–Contributions:
– KB (roughly 47,000 sentences)

– Dataset (non-diagram, multiple-choice)
– MLN models * 3
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Results and Analysis 
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Conclusions, Shortcomings and Future Work 

• Reasoning with automatically extracted 
knowledge:
– very hard
– first-order representations are highly inefficient
– structural variability makes it harder
– not up to par with textual feature-based approaches 

(Beltagy and Mooney, 2014)
• Potential fix:

Automatically learning weights might leverage model flexibility
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Questions ?


