Graphs:
Topological Sort, Shortest
paths problems

CIT594

Topological Sort

e Goal: Find an acceptable order for processing subtasks

Example

e Problem: We want to write a program that automatically builds an
online textbook from a collection of tutorials.

e We need to organize the tutorials so that given two tutorials A and B, if
a Ais a prerequisite for B, then A should be added and listed in the
online textbook before B

e Our program needs to access and list the tutorials in a specific order

e Topological sort allows us to do just that

Example - OpenDSA

- awmetadat:: Chapter 19 Graphs
tauthor: Cliff Shaffer
: i graph terminology
: graph implementation 1
itopic: Graphs

19.1. Graphs Chapter Introduction
19.1.1. Graph Terminology and Implementation
19.1.1.1. Graph Representations
19.1.2. Graph Terminology Questions

Graph Implementations

We next turn to the problem of implementing a general-purpose :term:"graph class. There are two traditional approaches to 19.2. Graph Implementatlons
representing graphs: The :term: adjacency matrix" and the :term:*adjacency list". In this module we will show actual implementations 19.3. Graph Traversals

for each approach. We will begin with an interface defining an ADT for graphs that a given implementation must meet. 19.3.1 Graph Traversals Ta b I e Of CO nte nt / I I St O

. 19.3.1.1. Depth-First Search 1
. cod lude:: Graphs/Graph
o 19.3.2. Breadth-First Search tUtorIaIS

19.4. Topological Sort
19.4.1. Topological Sort
19.4.1.1. Depth-first solution
19.4.1.2. Queue-based Solution
19.5. Shortest-Paths Problems

o TIBELEEEE 19.5.1. Shortest-Paths Problems
tauthor: Cliff Shaffer
irequires: graph implementation 19.5.1.1. Single-Source Shortest Paths
:satisfies: graph traversal
:to;ic: Grapﬁs ? 19.6. Minimal Cost Spanning Trees
19.6.1. Minimal Cost Spanning Trees
2 19.6.1.1. Prim's Algorithm
Graph Traversals 19.6.1.2. Prim's Algorithm Alternative Implementation

19.7. Kruskal's Algorithm
19.7.1. Kruskal's Algorithm
19.8. All-Pairs Shortest Paths

Graph Traversals

Many graph applications need to visit the vertices of a graph in some specific order based on the graph's topology. This is known as a
graph :term: ‘traversal® and is similar in concept to a ref: tree traversal <BinaryTreeTraversal>". Recall that tree traversals visit every
node exactly once, in some specified order such as preorder, inorder, or postorder. Multiple tree traversals exist because various
applications require the nodes to be visited in a particular order. For example, to print a BST's nodes in ascending order requires an
inorder traversal as opposed to some other traversal. Standard graph traversal orders also exist. Each is appropriate for solving certain
problems. For example, many problems in artificial intelligence programming are modeled using graphs. The problem domain might
consist of a large collection of states, with connections between various pairs of states. Solving this sort of problem requires getting
from a specified start state to a specified goal state by moving between states only through the connections. Typically, the start and
goal states are not directly connected. To solve this problem, the vertices of the graph must be searched in some organized manner.

Granh traversal alanrithme tunically heain with a start vertey and att t0 viit the remainina vertices from thera Granh travercals

. avmetadata:
:author: CLiff Shaffer
trequires: graph traversal - avmetadata::
:author: Cliff Shaffer
:satisfies: graph shortest path
stopic: Graphs

Topological Sort

Shortest-Paths Problems
Topological Sort

Shortest-Paths Problems
Assume that we need to schedule a series of tasks, such as classes or construction jobs, where we cannot start one task until after its

o . N . . A On a road map, a road connecting two towns is typically labeled with its distance. We can model a road network as a directed graph
prerequisites are completed. We wish to organize the tasks into a linear order that allows us to complete them one at a time without B 9 typically grapl

o L) o . " whose edges are labeled with real numbers. These numbers represent the distance (or other cost metric, such as travel time)
violating any prerequisites. We can model the problem using a DAG. The graph is directed because one task is a prerequisite of between two vertices, These labels may be called :term: 'weights <weight>", term:"costs <cost>", or term:distances <distances",
another -- the vertices have a directed relationship. It is acyclic because a cycle would indicate a conflicting series of prerequisites

the application. Gi h h, a typical problem is to find the total length of the shortest path between two
that could not be completed without violating at least one prerequisite. The process of laying out the vertices of a DAG in a linear specified vertices. This s not a trivial problem, because the shortest path may not be along the edge (if any) connecting two vertices,

_ order to meet the prerequisite rules is called a term: 'topological sort _bul rather may be along a path involving one or more intermediate verti _

Topological Sort

e The process of laying out the vertices of a DAG in a linear order such that
no vertex A in the order is preceded by a vertex that can be reached by a
(directed) path from A

o DAG: directed, acyclic graph

e The (directed) edges in the graph define a prerequisite system

e Goal: list the vertices in an order such that no prerequisites are violated

Topological Sort

e Depth-firstimplementation
1. When anode (n) is visited, do nothing

2. Recursively call topological sort on all the neighbors of n

3. When the recursion pops back to n (after processing all its neighbors) add
n to the (output) list of nodes

e This method produces a topological sortin reverse order
e |t does not matter where the sort starts, but all vertices must be visited

Topological Sort

e Queue-based implementation
1. Countthe number of edges that lead to each vertex
2. All vertices with no prerequisites are placed on the queue
3. Processthe queue:

1. When Vertex vis dequeued, itis printed, and all neighbors of v (all vertices
that have v as a prerequisite) have their counts decremented by one

2. Enqueue any neighbor whose count becomes zero
e |Ifthe queueis empty without printing all the vertices, then the graph is
not a DAG

e This method produces a topological sortin order

Class Activity

e Given the following graph, return its topological sort using the depth-first
implementation.

e Start atthe vertex 4. Always select the vertex with the smallest label at
each step

Shortest-Paths Problems

e Goal: find the total length of the shortest path between two specified
vertices

Shortest-Paths Problems

e We can model aroad or a computer network as a directed graph

e Edges are labeled with numbers representing the distance (or other cost
metrics, such as travel time) between two vertices

Single-source Shortest-Paths Problems

e Given a graph with weights or distances on the edges, and a designated
start vertex s, find the shortest path from s to every other vertex in the

graph

e Ifthe graphisunweighted (or all edges have the same cost) then BFS
can be used

e Ifthe graphisweighted, we need another solution: Dijkstra's algorithm

Dijkstra's algorithm

e |dea: process the vertices in a fixed order
e We process the vertices in order of distance from the start vertex (S)

e Assume that we have processed in order of distance from S to the first
i—1 vertices that are closest to S; call this set of vertices N, we are now
processing the it closest vertex; call it X:

o The shortest path from S to X is the minimum overall paths that go from S
to U, then have an edge from U to X, where U is some vertexin N

Dijkstra's algorithm

e Runtime analysis:

o O(|Vv?|) if we use a linear DS to find the minimum distance. Appropriate when
the graph is dense

o O((|V|[+|E|)log|E|) if we use a priority queue to find the minimum distance.

Appropriate when the graph is sparse

Here Comes the Java

o Need a way of storing additional info per vertex
e Could implement with some additional tables:

o HashMap<Vertex, Vertex> predecessor

o HashMap<Vertex, Double> distance
e Could instead just create a wrapper class

o PathVertexinfo, with fields:
Bl Vertex vertex;
B double distance;

B Vertex predecessor;

Here Comes the Java

e Inthisimplementation, Dijkstra’s returns a Map
associating the Vertex with its PathVertexInfo

e Need a way to reconstruct the path from the Map!

e Exercise:

String getShortestPath(Vertex startVertex, Vertex endVertex,
HashMap<Vertex, PathVertexInfo> infoMap)

Dijkstra's algorithm: USEFUL FOR HW 7!!!

// Compute shortest path distances from s, store them in D
static void Dijkstra(Graph G, int s, int[] D) {

for (int i=0; i<G.nodeCount(); i++) // Initialize
D[i] = INFINITY;

D[s] = 0;

for (int i=0; i<G.nodeCount(); i++) { // Process the vertices
int v = minVertex(G, D); // Find next-closest vertex
G.setValue(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

int[] nList = G.neighbors(v);
for (int j=0; j<nList.length; j++) {
int w = nList[]];
if (D[w] > (D[v] + G.weight(v, w)))
D[w] = D[v] + G.weight(v, w);

Runtime Revisited

e Runtime analysis:

o O(|v?|) if we use a linear DS to find the minimum distance.
Appropriate when the graph is dense

o O((|V|+|E|)log|E|) if we use a priority queue to find the
minimum distance. Appropriate when the graph is sparse

W 777772772727°72727°72727722772277227722772?7777

while Q0 is not empty:
u « Q.extract min()

for each neighbor v of u: é Fantasy
alt « dist[u] + Graph.Edges(u, v)
if alt < dist[v]:
dist[v] « alt
prev[v] « u
Q.decrease priority(v, alt)

Reality vvv

for (Edge edge : graph.getEdgesFrom(currentInfo.vertex)) {
Vertex adjacentVertex = edge.toVertex;
double alternativePathDistance = currentInfo.distance +

// If a shorter path from startVertex to adjacentVertex
// update adjacentVertex's distance and predecessor
PathVertexInfo adjacentInfo = info.get(adjacentVertex);
if (alternativePathDistance < adjacentInfo.distance) {
unvisited.remove(adjacentInfo) ;
adjacentInfo.distance = alternativePathDistance;
adjacentInfo.predecessor = currentlInfo.vertex;
unvisited.add(adjacentInfo);

Runtime Revisited

e Runtime analysis:

o O(|v?|) if we use a linear DS to find the minimum distance.
Appropriate when the graph is dense

o O((|V]+|E[)log|V|) if we use a priority queue to find the
minimum distance. Appropriate when the graph is sparse
and when the priority queue actually lets you update
priority in log(V) time!!

Graphs:
Minimal Cost Spanning

Trees
CIT5940

Minimal Cost Spanning Trees

e Goal: Find the subset of the (weighted) graph's edges

that maintains the connectivity of the graph while
having the lowest total cost

Minimal Cost Spanning Trees (MCST)

e The costis defined by the sum of the weights of the edges in the MCST

e The MCST would never have a cycle (tree)

o Anedge can be removed from the cycle and still preserve connectivity

e Algorithms:

o Prim's algorithm (not covering here, but included in slides)

o Kruskal's algorithm

Minimal Cost Spanning Trees (MCST)

e Applications:

o Connected network design: find the least amount of cables need to connect
cities, offices, etc.

5
2
A
F
1

B ——

'K

MCST: Prim’s Algorithm

1. Startwith any Vertex N in the graph, setting the MCST to be N initially

2. Pickthe least-cost edge connected to N. This edge connects N to
another vertex; call this M. Add Vertex M and Edge (N,M) to the MCST

3. Pickthe least-cost edge coming from either N or M to any other vertex
in the graph. Add this edge and the new vertex it reaches to the MCST

4, Continue the process (2-3), at each step expanding the MCST by
selecting the least-cost edge from a vertex currently in the MCST to a
vertex not currently in the MCST

MCST: Prim’s Algorithm

e Similar to Dijkstra’s algorithm

e Theorem: Prim's algorithm produces a minimum-cost
spanning tree

// Compute shortest distances to the MCST, store them in D.
// V[i] will hold the index for the vertex that is i's parent in the MCST
void Prim(Graph G, int s, int[] D, int[] V) {

for (int i=0; i<G.nodeCount(); i++) // Initialize
D[i] = INFINITY;

D[s] = 0;

for (int i=0; i<G.nodeCount(); i++) { // Process the vertices
int v = minVertex(G, D); // Find next-closest vertex
G.setValue(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

if (v != s) AddEdgetoMST(V[v], V);
int[] nList = G.neighbors(v);
for (int j=0; j<nList.length; j++) {
int w = nList[j];
if (D[w] > G.weight(v, w)) {
D[w] = G.weight(v, w);
Viw] = v;

MCST: Prim’s Algorithm

// Compute shortest distances to the MCST, store them in D.
// V[i] will hold the index for the vertex that is i's parent in the MCST
void Prim(Graph G, int s, int[] D, int[] V) {

for (int i=0; i<G.nodeCount(); i++) // Initialize
D[i] = INFINITY;

D[s] = 0;

for (int i=0; i<G.nodeCount(); i++) { // Process the vertices
int v = minVertex(G, D); // Find next-closest vertex
G.setValue(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable

if (v != s) AddEdgetoMST(V[V], V);
int[] nList = G.neighbors(v);
for (int j=0; j<nList.length; j++) {
int w = nList[j];
if (D[w] > G.weight(v, w)) {
D[w] = G.weight(v, w);
Vw]

Vi

MCST: Prim’s Algorithm

® Class Activity: Given the following graph. Build its MCST using Prim’s algorithm
starting at vertex 1. Indicate the distances and the order in which the vertices are

processed.
Verte | Distance From

X Vertex

List of vertices (in processing order)

Kruskal’s Algorithm

1. Partition the set of vertices into |V| disjoint sets (each consisting of one
vertex)
2. Processthe edgesin order of weight

o Anedgeisadded to the MCST, and two disjoint sets are combined, if the edge
connects two vertices in different disjoint sets

o This process is repeated until only one disjoint set remains

Kruskal’s Algorithm

® Class Activity: Given the following graph. Build its MCST using Kruskal’s algorithm
Indicate the parent of each vertex and the order in which the edges are added to
the MCST.

1 >/2‘/: 3 6
O
3 @/
Vertex | Parent

List of MCST edges (in order)

Ol |] O DN

Kruskal’s Algorithm (for

// Kruskal's MST algorithm

void Kruskal(Graph G) {
ParPtrTree A = new ParPtrTree(G.nodeCount()); // Equivalence array
KVPair[] E = new KVPair[G.edgeCount()]; // Minheap array
int edgecnt = 0; // Count of edges

for (int i=0; i<G.nodeCount(); i++) { // Put edges in the array
int[] nList = G.neighbors(i);
for (int w=0; w<nList.length; w++)
E[edgecnt++] = new KVPair(G.weight(i, nList[w]), new int[]{i,nList[w]});

}
MinHeap H = new MinHeap(E, edgecnt, edgecnt);
int numMST = G.nodeCount(); // Initially n disjoint classes
for (int i=0; numMST>1; i++) { // Combine equivalence classes
KVPair temp = H.removemin(); // Next cheapest edge
if (temp == null) return; // Must have disconnected vertices
int v = ((int[])temp.value())[0];
int u = ((int[])temp.value())[1l];
if (A.differ(v, u)) { // If in different classes
A.UNION(v, u); // Combine equiv classes
AddEdgetoMST (v, u); // Add this edge to MST
numMST--; // One less MST
}
}

* O(|E|log|E]) in the worst case
* O(]V|log|E|) in the average case

Kruskal’s Algorithm: Union/Find

e A process for maintaining a collection of disjoint sets.
e The FIND operation determines which disjoint set a given object resides in
e The UNION operation combines two disjoint sets when it is determined

that they are members of the same equivalence class under some
equivalence relation.

Kruskal’s Algorithm: Union/Find

e Equivalence relation: “is connected to” (ref)
e Arelation Ris an equivalence relation on set S if it is reflexive, symmetric,

and transitive
e Each subset/tree represents an equivalence class (connected
components)

Kruskal’s Algorithm: Union/Find

e Parent pointer representation (PPR): a node implementation (for a Tree)
where each node stores only a pointer to its parent, rather than to its
children.

e PPR makes it easy to go up the tree toward the root, but not down the tree
toward the leaves
PPR is often used to maintain a collection of disjoint sets.

PPR implements a parent pointer tree

Kruskal’s Algorithm: Union/Find

// General Tree implementation for UNION/FIND
public class ParPtrTree ({

private int[] array; // Node array

ParPtrTree(int size) {
array = new int[size]; // Create node array
for (int i=0; i<size; i++)
array[i] = -1; // Each node is its own root to start

// Merge two subtrees if they are different
public void UNION(int a, int b) {

int rootl = FIND(a); // Find root of node a
int root2 = FIND(b); // Find root of node b
if (rootl != root2) // Merge two trees

array[rootl] = root2;

// Return the root of curr's tree
public int FIND(int curr) {
while (array[curr] != -1)
curr = array[curr];
return curr; // Now at root

