
A* and
Informed
Search

CIT 5940 Spring 2025 @ University of Pennsylvania 1

Search and Graphs

Mostly, you've seen graphs as data

structures that exist independently of

the search

A network of social connections

A finite state machine

Points on a grid

Sometimes we want to search for solutions

to a problem

"Find a solution if it exists" instead of

"find a path from s to t"

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 2

Generating The Graph As

You Search

We can use graphs to represent the

states of problems (nodes) accessible

by sequences of actions (edges)

Typically don't have the full

picture of the graph from

this POV

can generate it as you go

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 3

Nodes and Edges, not a Graph

Representing the graph:

We can't store the whole graph, but we can store nodes that we find

Nodes are objects storing {parent, state, ...} (??)

The set of actions available at each state denote the edges from each node

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 4

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 5

Nodes in Dijkstra's

Want a PriorityQueue of these things, so they should be ordered by path cost.

public class Node implements Comparable<Node>{
 private T state; // e.g. location in space or tic-tac-toe board
 private int g; // path cost, called "g" by convention
 private Action parentAction; // action taken to get here from parent
 private Node parent; // the parent itself

 public int compareTo(Node other) { return this.g - other.g; }
}

Nodes are objects storing {state, g, parentOperation, parent}

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 6

Dijkstra's

Setup...

start = new Node(startState, 0, null, -1)
frontier = new PriorityQueue<Node>();
frontier.add(start);
costSoFar = new HashMap<Node, Integer>();
costSoFar.put(start, 0);

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 7

Dijkstra's

Core Loop...

while (!frontier.isEmpty()) {
 current = frontier.pop();
 if (current.isGoal()) { return current; }
 for (int i = 0; i < current.numActions(); i++) {
 Edge<T> action = current.nthAction(i);
 Node next = action.resolve();
 int newCost = costSoFar.get(current) + action.cost;
 if (!costSoFar.containsKey(next) || newCost < costSoFar.get(next)) {
 costSoFar.put(next, newCost);
 frontier.push(next, new_cost);
 }
 }
}

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 8

Nodes and Edges, not a Graph

Need domain knowledge to help generate the graph as you traverse it

Essential Qs to answer:

Where does the search start from?

What does a solution look like?

What actions are available from each state?

What happens if I perform this action on this state?

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 9

Nodes and Edges

private interface INode<T> {
 // how far do we seem to be from a goal?
 public int f();
 // how far have we come from the start?
 public int g();
 // how did we get here?
 public int parent();
 // where are we now?
 public Domain<T> state();
}

private interface IEdge<T> {
 // what is the cost of taking this action?
 public int getCost();
 // what is this action?
 public int getAction();
 // what is the action that we took to get here?
 public int getParentAction();
}

No Graph.java needed!

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 10

Grid Navigation Setting

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 11

Grid Navigation Setting

Finds a better path than an unweighted BFS would...

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 12

Grid Navigation Setting

...but look at all that explored space that wasn't useful.

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 13

Dijkstra's: Slow and Steady

Dijkstra's definitionally explores all

paths of cost before exploring any

paths of cost .

Lots of "unviable" paths explored

Doesn't incorporate any

information about what would

make a path promising.

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 14

Idea: Be Greedy

Greedy algorithms make locally optimal decisions in hopes that they will lead to

globally optimal solutions.

What if we explored nodes in order of how close they seem to the goal, disregarding

actual board information and the cost of getting to that node in the first place?

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 15

Nodes in Greedy Best First Search

Want a PriorityQueue of these things, so they should be ordered by apparent

distance to goal.

public class Node implements Comparable<Node>{
 private T state; // e.g. location in space or tic-tac-toe board
 private int h; // estimate of cost from current location to goal
 private Action parentAction; // action taken to get here from parent
 private Node parent; // the parent itself

 public int compareTo(Node other) { return this.h - other.h; }
}

Nodes are objects storing {state, h, parentOperation, parent}

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 16

h is for "Heuristic"

A heuristic (from the Greek "Eureka!") is an educated guess or an estimate generated

through insight.

In grid navigation with obstacles, a heuristic for distance to goal would be the

euclidean distance to the goal

For a Rubik's Cube, a heuristic for better states might be the number of

mismatched color squares

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 17

Greedy Best First Search

Core Loop...

while (!frontier.isEmpty()) {
 current = frontier.pop();
 if (current.isGoal()) { return current; }
 for (int i = 0; i < current.numActions(); i++) {
 Edge<T> action = current.nthAction(i);
 Node next = action.resolve();
 int newCost = distanceToGoal(next); // only change from Dijkstra!
 if (!costSoFar.containsKey(next) || newCost < costSoFar.get(next)) {
 costSoFar.put(next, newCost);
 frontier.push(next, new_cost);
 }
 }
}

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 18

Greedy Best-First Search

Explores far fewer nodes

than Dijkstra's!

...but also gives a suboptimal path...

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 19

A*: The Big Idea

Dijkstra's is helpful because it always returns a shortest path.

Get this guarantee by exploring in increasing order of path cost

Greedy Best First Search is helpful because it spends less time exploring

useless paths.

Gets this speedup by preferring nodes that appear closer to the goal

A* could improve on both by doing both!

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 20

Nodes in A*

Want a PriorityQueue of these things, so they should be ordered by apparent

distance to goal.

public class Node implements Comparable<Node>{
 private T state; // e.g. location in space or tic-tac-toe board
 private int h; // estimate of cost from current location to goal
 private int g; // path cost to reach this node
 private int f; // g + h
 private Action parentAction; // action taken to get here from parent
 private Node parent; // the parent itself

 public int compareTo(Node other) { return this.f - other.f; }
}

Nodes are objects storing {state, f, parentOperation, parent}

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 21

Key Idea:

As long as a heuristic never overestimates the distance to the goal, a

PriorityQueue ordered by f = g + h will allow us to find an optimal path.

In practice, we will explore fewer fruitless paths.

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 22

A*

Core Loop...

while (!frontier.isEmpty()) {
 current = frontier.pop();
 if (current.isGoal()) { return current; }
 for (int i = 0; i < current.numActions(); i++) {
 Edge<T> action = current.nthAction(i);
 Node next = action.resolve();
 int newCost = costSoFar.get(current) + action.cost + distanceToGoal(next);
 if (!costSoFar.containsKey(next) || newCost < costSoFar.get(next)) {
 costSoFar.put(next, newCost);
 frontier.push(next, new_cost);
 }
 }
}

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 23

A*

Explore fewer nodes than Dijkstra's

and still find an optimal path.

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 24

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 25

Prefer to explore along contours of

slowly increasing path costs that are

still oriented towards the goal.

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 26

IBM published an amazing overview of A* in Java here.

[Note: This slide contained a screenshot of an IBM article titled "Faster problem solving

in Java with heuristic search" by Matthew Hatem, Ethan Burns, Wheeler Ruml, published

July 16, 2013.]

Link: IBM A* in Java article

A* SEARCH

CIT 5940 Spring 2025 @ University of Pennsylvania 27

https://developer.ibm.com/articles/j-ai-astar/

	A* and Informed Search
	Search and Graphs
	Generating The Graph As You Search

	Nodes and Edges, not a Graph
	Nodes in Dijkstra's
	Dijkstra's
	Dijkstra's

	Nodes and Edges, not a Graph
	Nodes and Edges
	Grid Navigation Setting
	Grid Navigation Setting
	Grid Navigation Setting
	Dijkstra's: Slow and Steady
	Idea: Be Greedy
	Nodes in Greedy Best First Search
	h is for "Heuristic"
	Greedy Best First Search
	Greedy Best-First Search
	A*: The Big Idea
	Nodes in A*
	Key Idea:
	A*
	A*

	IBM published an amazing overview of A* in Java here.

