Tree Indexing

1

Introduction

A real-world database typically exhibits the following characteristics:

- Records are frequently updated
- A search can be performed using one or more keys
- Range and min/max queries are performed

Facing the Facts

- Linear indexing is not efficient for **updating**
- Hash tables are not efficient for **range queries**
- So... Tree Indexing?

BST Indexing

Use a BST to store primary and secondary indices?

- $O(\log n)$ to look up an index \checkmark
- $O(\log n)$ to perform a range query \checkmark
- $O(\log n)$ to insert or delete a record \checkmark

...assuming we fit it all in program memory.

Big BST Indexing

If a database is big enough, the index won't fit in program memory!

- Every time a BST node B is visited, it is necessary to visit all nodes along the path from the root to B
- Each node on this path must be retrieved from disk.
- Each disk access returns a block of information.
 - If a node is on the same block as its parent, then the cost to find that node is trivial once its parent is in main memory.

Still $O(\log n)$, but disk reads are **1,000,000X** slower than RAM operations.

Activity

Number of block reads for finding key 12? (Nodes of the same color are found in the same block.)

Activity

Assuming that a block can store only three keys, what would be the coloring of these nodes that leads to the lowest expected number of block reads per lookup?

Minimizing Block Reads

We prefer a structure that puts parents & children in the same block!

BST Indexing (challenges)

The BST must remain balanced after insertions and deletions

- Need to rearrange data within the tree to maintain $O(\log n)$ height.
- Difficult to maintain good block arrangement if nodes get rearranged.
- We need a different tree structure.

2-3 Tree

- Not a Binary Tree
- A node contains one or two keys
- Every internal node has either two children (if it contains one key) or three children (if it contains two keys)
- All leaves are at the same level in the tree, so the tree is always height-balanced

TREE INDEXING

2-3 Tree Properties

For every node:

- The values in left are less than K1
- The values in middle are greater than K1 and less than K2
- The values in right are greater than K2

A 2-3 node with two keys (K1, K2) and three pointers

2-3 Tree Search

- Start at the root.
- While ∃ a node to search, check its keys.
- If a match is not found, proceed with search in the correct subtree.
- Continue until a null node is reached (failure) or the target key is found (success)

2-3 Tree Search

It's BST search, but with more options per step.

```
public E find(TTNode<Key, E> root, Key k) {
if (root == null) return null;
if (k.compareTo(root.lkey()) == 0) return root.lval();
if (root.rkey() != null && k.compareTo(root.rkey()) == 0) {
    return root.rval();
3
if (k.compareTo(root.lkey()) < 0) {</pre>
    return find(root.left(), k);
3 else if (root.rkey() == null || k.compareTo(root.rkey()) < 0) {</pre>
    return find(root.middle(), k);
} else {
    return find(root.right(), k);
3
```

Shape of a 2-3 Tree

- All leaves are on the same level, so the tree is height balanced.
- Height balanced trees have an upper bound on their height of $O(\log_b n)$, where b is the **branching factor**, or number of children per node.
- Search in a 2-3 tree of height $O(\log n)$ takes $O(\log n)$ time.

Key challenge, therefore, is to keep the 2-3 tree height balanced always.

2-3 Tree: Insertion

- New record is stored in a leaf node (like BST)
- Algorithm:
 - $\circ\,$ Find correct leaf node L where the new key belongs
 - If that node has space, add the record there.
 - If that node doesn't have space, SPLIT and PROMOTE

SPLIT

Inserting 30...

[23 |] / | [14|] [29|33]

The middle element, 30 will now be PROMOTED.

PROMOTE

Split & Promote

Split: If the leaf node is full, there are two keys present and one key to be inserted. Keep the smallest key in the existing leaf, create a new leaf for the greatest key, and **promote** the middle key.

Promote: Inserting a middle key into the parent node, recursively **splitting** and **promoting**.

Effects

Like a BST, the new key is always inserted into a leaf node.

Unlike a BST, we never create a leaf node that is deeper than the other leaf nodes.

- When does the depth of a leaf change? When we have to split the root!
- But then all leaves get pushed down one level deeper.

So, height of the tree increases **rarely** and balance is maintained **always**. $O(\log n)$ time to insert and maintain $O(\log n)$ height.

Deletion

Three major cases:

- 1. Deletion from a leaf with two keys
- 2. Deletion from a leaf with one key
- 3. Deletion from an internal node

If (1), just remove the key. If (2) or (3) find a replacement within the tree, and then recursively delete that replacement from its previous position.

B Tree

- Generalization of the 2-3 tree
- Invented by R. Bayer and E. McCreight
- Used to implement most modern file systems (Linux, Windows, Apple)
- Used to index tables in relational database management systems

B-Tree: Main Idea

- Keep all leaves at the same level like a 2-3 tree
- Set the size of node to be the size of a block—probably get lots of keys per node this way!
- If a block stores m keys, we will have between $\lceil m/2 \rceil$ and m children per internal node.

Few block reads! Low tree height! Wow!

B-Tree of Order Four

It's like a 2-3 tree, but each node is one bigger.

B-Tree Search

- Start at the root.
- While \exists a node to search, check its keys using **binary search**—nodes are sorted.
- If a match is not found, proceed with search in the correct subtree.
- Continue until a null node is reached (failure) or the target key is found (success)

It's the same as the 2-3 tree search!

B-Tree of Order Four

Find 47!

B-Tree Search

Trees are still height-balanced with a height of $O(\log_m n)$

- Still get $O(\log n)$ runtime for search
- The bigger the value of *m*, the shallower the tree (improvement by a constant factor)
- The bigger values of m do mean slower search within a node, but...
 - do binary search instead of linear search
 - the node size is constant, so who cares

B-Tree: Insertion

- New record is stored in a leaf node
- Algorithm:
 - \circ Find correct leaf node L where the new key belongs
 - If that node has space, add the record there.
 - If that node doesn't have space, SPLIT and PROMOTE

It's the same, but SPLIT is just a little different

B-Tree Split & Promote

Split: If the leaf node is full, there are *m* keys present and one key to be inserted. Keep the lower half of keys in the existing leaf, create a new leaf for the upper half of key, and **promote** the middle key.

Promote: Inserting a middle key into the parent node, recursively **splitting** and **promoting**.

Same effect of inserting leaves at the same level to maintain balance and rarely increase height.

Big Ideas

We can optimize a tree index by expanding the node size

- fewer block reads
- $O(\log n)$ many lookups required

A Linear Index was still very helpful for:

- range queries
- low overhead
- $O(\log n)$ search when sorted

Can we combine the two ideas?

B+ Tree (structure)

- B+ tree stores records only at the leaf nodes
- Internal nodes store search keys
 - used to guide the search
- The leaf nodes store the records and are linked together to form a doubly linked list
 - The entire collection of records can be traversed in sorted order by visiting all the leaf nodes on the linked list

B+ Tree of Order 3

B+ Tree: Analysis

- All operations run in $O(\log_b n)$
- The base of the log is the (average) branching factor of the tree
- Database applications use extremely high branching factors, >=100
 - b = 100 implies that a B+ tree with a height of four stores between 250k and 100 million records
 - Overhead? Not so much! ~1/100 of nodes will be internal nodes
 - 1/k rule for k-ary trees

B+ Tree: Analysis (continued)

To minimize disk accesses:

- Upper levels (internal nodes) of the B+ tree stored in memory
- Internal nodes require little space (do not store records)
- Fewer internal nodes
- Leaf nodes stored on disk

Leaf nodes resemble a linked list divided into blocks such that insertion and deletion only requires shifting of about a block's worth of elements instead of potentially all n.