
Tree Indexing

CIT 5940 Spring 2025 @ University of Pennsylvania 1



Introduction

A real-world database typically exhibits the following characteristics:

Records are frequently updated

A search can be performed using one or more keys

Range and min/max queries are performed

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 2



Facing the Facts

Linear indexing is not efficient for updating

Hash tables are not efficient for range queries

So... Tree Indexing?

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 3



BST Indexing

Use a BST to store primary and secondary indices?

 to look up an index 

 to perform a range query 

 to insert or delete a record 

...assuming we fit it all in program memory.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 4



Big BST Indexing

If a database is big enough, the index won't fit in program memory!

Every time a BST node  is visited, it is necessary to visit all nodes along the path

from the root to B

Each node on this path must be retrieved from disk.

Each disk access returns a block of information. 

If a node is on the same block as its parent, then the cost to find that node is

trivial once its parent is in main memory. 

Still , but disk reads are 1,000,000X slower than RAM operations.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 5



Activity

Number of block reads

for finding key 12?

(Nodes of the same

color are found in the

same block.)

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 6



Activity

Assuming that a block

can store only three

keys, what would be

the coloring of these

nodes that leads to

the lowest expected

number of block reads

per lookup?

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 7



Minimizing Block

Reads

We prefer a structure that

puts parents & children in the

same block!

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 8



BST Indexing (challenges)

The BST must remain balanced after insertions and deletions

Need to rearrange data within the tree to maintain  height.

Difficult to maintain good block arrangement if nodes get rearranged.

 We need a different tree structure.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 9



2-3 Tree

Not a Binary Tree

A node contains one or two keys

Every internal node has either two children (if it contains one key) or three children

(if it contains two keys)

All leaves are at the same level in the tree, so the tree is always height-balanced

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 10



K1 K2

left middle right

2-3 Tree Node

A 2-3 node with two keys (K1, K2) and three pointers

2-3 Tree Properties

For every node:

The values in left  are less than K1

The values in middle  are greater than K1

and less than K2

The values in right  are greater than K2

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 11



2-3 Tree Search

Start at the root.

While  a node to

search, check its keys.

If a match is not found,

proceed with search in

the correct subtree.

Continue until a null

node is reached

(failure) or the target

key is found (success)

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 12



2-3 Tree Search

It's BST search, but with more options per step.

public E find(TTNode<Key, E> root, Key k) {
    if (root == null) return null;
    if (k.compareTo(root.lkey()) == 0) return root.lval();
    if (root.rkey() != null && k.compareTo(root.rkey()) == 0) {
        return root.rval();
    } 
    if (k.compareTo(root.lkey()) < 0) {
        return find(root.left(), k);
    } else if (root.rkey() == null || k.compareTo(root.rkey()) < 0) {
        return find(root.middle(), k);
    } else {
        return find(root.right(), k);
    }
}

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 13

Note
![bg right:40% w:130%](2-3-tree-node.svg)



Shape of a 2-3 Tree

All leaves are on the same level, so the tree is height balanced.

Height balanced trees have an upper bound on their height of , where  is

the branching factor, or number of children per node.

Search in a 2-3 tree of height  takes  time.

Key challenge, therefore, is to keep the 2-3 tree height balanced always.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 14



2-3 Tree: Insertion

New record is stored in a leaf node (like BST)

Algorithm:

Find correct leaf node  where the new key belongs

If that node has space, add the record there.

If that node doesn't have space, SPLIT and PROMOTE

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 15



SPLIT

Inserting 30 ...

    [23 | ]
   /    |
[14| ] [29|33]

    [23   |    ]
   /    
[14| ] [29| ] [33| ]

The middle element, 30  will now be PROMOTED.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 16



PROMOTE

    [23   | 30  ]
   /     /     \
[14| ] [29| ] [33| ]

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 17



Split & Promote

Split: If the leaf node is full, there are two keys present and one key to be inserted.

Keep the smallest key in the existing leaf, create a new leaf for the greatest key, and

promote the middle key.

Promote: Inserting a middle key into the parent node, recursively splitting

and promoting.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 18



Effects

Like a BST, the new key is always inserted into a leaf node.

Unlike a BST, we never create a leaf node that is deeper than the other leaf nodes.

When does the depth of a leaf change? When we have to split the root!

But then all leaves get pushed down one level deeper.

So, height of the tree increases rarely and balance is maintained always.

  time to insert and maintain  height.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 19



Deletion

Three major cases:

1. Deletion from a leaf with two keys

2. Deletion from a leaf with one key

3. Deletion from an internal node

If (1), just remove the key. If (2) or (3) find a replacement within the tree, and then

recursively delete that replacement from its previous position.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 20



B Tree

Generalization of the 2-3 tree

Invented by R. Bayer and E. McCreight

Used to implement most modern file systems (Linux, Windows, Apple)

Used to index tables in relational database management systems

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 21



B-Tree: Main Idea

Keep all leaves at the same level like a 2-3 tree

Set the size of node to be the size of a block—probably get lots of keys per node

this way!

If a block stores  keys, we will have between  and  children per

internal node.

Few block reads! Low tree height! Wow!

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 22



B-Tree of Order Four

It's like a 2-3 tree, but each node is one bigger.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 23



B-Tree Search

Start at the root.

While  a node to search, check its keys using binary search—nodes are sorted.

If a match is not found, proceed with search in the correct subtree.

Continue until a null node is reached (failure) or the target key is found (success)

It's the same as the 2-3 tree search!

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 24



B-Tree of Order Four

Find 47 !

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 25



B-Tree Search

Trees are still height-balanced with a height of 

Still get  runtime for search

The bigger the value of , the shallower the tree (improvement by a

constant factor)

The bigger values of  do mean slower search within a node, but...

do binary search instead of linear search

the node size is constant, so who cares

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 26



B-Tree: Insertion

New record is stored in a leaf node

Algorithm:

Find correct leaf node  where the new key belongs

If that node has space, add the record there.

If that node doesn't have space, SPLIT and PROMOTE

It's the same, but SPLIT is just a little different

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 27



B-Tree Split & Promote

Split: If the leaf node is full, there are  keys present and one key to be inserted. Keep

the lower half of keys in the existing leaf, create a new leaf for the upper half of key, and

promote the middle key.

Promote: Inserting a middle key into the parent node, recursively splitting

and promoting.

Same effect of inserting leaves at the same level to maintain balance and rarely

increase height.

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 28



Big Ideas

We can optimize a tree index by expanding the node size

fewer block reads

 many lookups required

A Linear Index was still very helpful for:

range queries

low overhead

 search when sorted

Can we combine the two ideas?

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 29



B+ Tree (structure)

B+ tree stores records only at the leaf nodes

Internal nodes store search keys

used to guide the search

The leaf nodes store the records and are linked together to form a doubly linked list

The entire collection of records can be traversed in sorted order by visiting all

the leaf nodes on the linked list

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 30



B+ Tree of Order 3

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 31



B+ Tree: Analysis

All operations run in 

The base of the log is the (average) branching factor of the tree

Database applications use extremely high branching factors, >=100

b = 100 implies that a B+ tree with a height of four stores between 250k and

100 million records

Overhead? Not so much! ~1/100 of nodes will be internal nodes

1/k rule for k-ary trees

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 32



B+ Tree: Analysis (continued)

To minimize disk accesses:

Upper levels (internal nodes) of the B+ tree stored in memory

Internal nodes require little space (do not store records)

Fewer internal nodes

Leaf nodes stored on disk

Leaf nodes resemble a linked list divided into blocks such that insertion and deletion

only requires shifting of about a block's worth of elements instead of potentially all .

TREE INDEXING

CIT 5940 Spring 2025 @ University of Pennsylvania 33


	Tree Indexing
	Introduction
	Facing the Facts
	BST Indexing
	Big BST Indexing
	Activity
	Activity
	Minimizing Block Reads
	BST Indexing (challenges)
	2-3 Tree
	2-3 Tree Properties
	2-3 Tree Search
	2-3 Tree Search
	Shape of a 2-3 Tree
	2-3 Tree: Insertion
	SPLIT
	PROMOTE

	Split & Promote
	Effects
	Deletion
	B Tree
	B-Tree: Main Idea
	B-Tree of Order Four
	B-Tree Search
	B-Tree of Order Four
	B-Tree Search
	B-Tree: Insertion

	B-Tree Split & Promote
	Big Ideas
	B+ Tree (structure)
	B+ Tree of Order 3
	B+ Tree: Analysis
	B+ Tree: Analysis (continued)

