
Java

Collections

The Java Collection Interface

The root interface in the collection hierarchy

A collection represents a group of objects, which are known as its elements

Some of the many subinterfaces & implementations:

List: an ordered sequence of elements

ArrayList, LinkedList

Deque: a double-ended queue

ArrayDeque, LinkedList (useful for stack operations)

Set: an unordered collection with no duplicates

TreeSet, HashSet

COLLECTIONS

1

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html

Properties of Collections

Property Definition Example

Ordered
Elements have "positions" or indices; user can control

where to insert or retrieve an element

add(int index, E

element) in List ADT

Unordered
User cannot control where to insert or

retrieve elements

add(E element) in Set

ADT

Sorted
Collection elements are sorted using their natural

ordering (when Comparable) or by a comparator.

SortedSet ADT,

TreeSet

Allow

duplicates

Multiple copies of two elements that are equals()

to each other can be stored in the same data

structure

List ADT

No

duplicates

Only one copy of an element can be stored in the

data structure
Set ADT

COLLECTIONS

2

The Collection Interface: Key Operations

boolean add(E e) adds the specified element to the collection

boolean contains(Object o) returns true if this collection contains the

specified element

boolean remove(Object o) removes the specified element from this

collection (if present)

All return boolean to indicate success or not. Why?

COLLECTIONS

3

The Collection Interface: Operations

Operations relying on comparing elements using equals() or hashCode()
methods take an object as parameter instead of a generic type.

Both methods are defined in the Object class so everything in Java has

them.

You provide implementations of these methods when you define your

own classes.

COLLECTIONS

4

Ordered Data Structures

Elements have "positions" or indices; operations for inserting or retrieving elements are

defined in terms of the location at which that element lives.

Arrays are ordered: use the [] notation to specify indices

Lists of all persuations (ArrayList , LinkedList , Vector) are ordered

COLLECTIONS

5

Affordances & Arrays

Arrays are simple, but they offer only three real operations: set , get , and length

Lists in Java are built to provide easier implementation of important ordered operations

(add , contains , remove)

ArrayList is your go-to about 90% of the time. Actually more like 99%.

LinkedList also exists. You probably don't want to actually use it.

COLLECTIONS

6

Ordered Sorted

Here's an ordered array that's not sorted:

[3, 1, 4, 1, 5, 9, 2]

Here's an ordered array that IS sorted:

[1, 1, 2, 3, 4, 5, 9]

To turn some ordered array/list into a sorted array/list, use

Arrays.sort()/Collections.sort() .

COLLECTIONS

7

Sorting Yourself Out

What's the sorted version of this array

of students?

[new Student("Harry", 54),

new Student("Voravich", 80),

new Student("Sid", 79)]

COLLECTIONS

public class Student {
 private String name;
 private int score;

 public Student(String name, int score) {
 this.name = name;
 this.score = score;
 }
}

8

Sorting Yourself Out

What's the sorted version of this array

of students?

[new Student("Harry", 54),

new Student("Voravich", 80),

new Student("Sid", 79)]

There's no well-defined ordering! .sort() would fail to compile, actually, because

Java can't figure out how to do the necessary comparisons between any two Student
objects.

COLLECTIONS

public class Student {
 private String name;
 private int score;

 public Student(String name, int score) {
 this.name = name;
 this.score = score;
 }
}

9

The Comparable Interface

Built-in Java interface

Includes a single abstract method to implement: compareTo

A class that implements Comparable must provide an implementation of

compareTo

Objects of a class implementing the ADT are "sortable"

Imposes a total ordering on the objects of each class that implements it

This ordering is referred to as the class' natural ordering, and

The class's compareTo method is referred to as its natural comparison

method

COLLECTIONS

10

The Comparable ADT: compareTo

Compares two objects for order

Returns:

a negative integer if the object on which the method is invoked is less than the

object passed as an argument

zero if the object on which the method is invoked is equal to the object passed

as an argument

a positive integer if the object on which the method is invoked is greater than

the object passed as an argument

COLLECTIONS

objInvokedOn.compareTo(objPassedAsArg);

11

Making an Object Sortable

Comparable is generically typed, so you have to specify the type in the class definition

public class Student implements Comparable<Student> {
 private String name;
 private int score;

 public Student(String name, int score) {
 this.name = name;
 this.score = score;
 }

 @Override
 public int compareTo(Student other) {
 // TODO: implement so that Students are ordered by score, incr.
 }
}

Making an Object Sortable

Comparable is generically typed, so you have to specify the type in the class definition

public class Student implements Comparable<Student> {
 private String name;
 private int score;

 public Student(String name, int score) {
 this.name = name;
 this.score = score;
 }

 @Override
 public int compareTo(Student other) {
 return this.score - other.score;
 }
}

Note

The `hashCode()` Method

Returns an integer for this `Object` generated by some kind of *hash function*.
- Should return the same value when called on the same object more than once
- If two objects are equal according to `equals()`, then they must return the same value for `hashCode()`

`hashCode()` for `String`

JavaDocs [here](https://docs.oracle.com/javase/10/docs/api/java/lang/String.html#hashCode()).

![Alt text](image-41.png)

Sorted Data Structures

Use a Binary Search Tree to store records (more on these in a couple weeks)

Records need to be compared in order to find where to insert a new record

Implementations:

TreeSet

TreeMap

COLLECTIONS

14

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeSet.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeMap.html

The Comparator ADT

Defines a comparison function, which imposes a total ordering on some collection

of objects

Provides an ordering for collections of objects that don't have a natural ordering

i.e. those that don't implement Comparable

COLLECTIONS

15

The Comparator ADT: compare

Compares o1 and o2 for order. Returns:

a negative integer if o1 is less than o2

zero if o1 is equal to o2

a positive integer if o1 is greater than o2

(same rules as compareTo())

COLLECTIONS

int compare(T o1, T o2);

16

Example: Why?

Consider the following class:

COLLECTIONS

public class Tuple<L, R> {
 private L left;
 private R right;

 public Tuple(L left, R right) {
 this.left = left;
 this.right = right;
 }
}

17

Example: Why?

The following code would throw an exception:

COLLECTIONS

Tuple<Integer, Integer> t1 = new Tuple<>(7, 1);
TreeSet<Tuple<Integer, Integer>> s = new TreeSet<>();
s.add(t1);

Exception in thread "main" java.lang.ClassCastException: class Tuple cannot be cast to class java.lang.Comparable

18

Example: Using a Comparator

This sorted collection of Tuple objects will be maintained in ascending order of their

left values.

COLLECTIONS

Comparator<Tuple<Integer, Integer>> cmp = new Comparator<>() {
 @Override
 public int compare(Tuple<Integer, Integer> t1, Tuple<Integer, Integer> t2) {
 return t1.left - t2.left;
 }
};

TreeSet<Tuple<Integer, Integer>> s1 = new TreeSet<>(cmp);
s1.add(t1);

19

The Map Interface

A map is an object that maps keys to values.

A map cannot contain duplicate keys, but duplicate values are OK

Each key can only map to at most one value

Subinterfaces and implementations:

SortedMap

TreeMap

HashMap

COLLECTIONS

20

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/SortedMap.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/HashMap.html

The Map Interface: Operations

Method Purpose

V put(K key, V value)
Associates the specified value with the specified key in

this map

V get(Object key)
Returns the value to which the specified key is mapped,

or null

boolean containsKey(Object key)
Returns true iff this map contains a mapping for the

specified key

V remove(Object key)
Removes the mapping for the specified key from this

map if present

boolean remove(Object key,

Object value)

Removes the entry for the specified key only if it is

currently mapped to the specified value

COLLECTIONS

21

Collection Exercises

Given an array of integers, return a data structure containing the integers in

reverse order. (Iterating through the data structure using for-each should give the

exact reverse order)

COLLECTIONS

22

Collection Exercises

Given an array of integers, return a data structure that stores each integer along

with the number of times that the integer appeared in the original array.

COLLECTIONS

23

Collection Exercises

Given an array of integers, return another array of integers with all duplicate

integers removed.

COLLECTIONS

24

Collection Exercises

Given an array of names, return the data structure that will be most efficient in

looking up whether a name was contained in the original array.

COLLECTIONS

25

Summary

Different data structures, even those with the same opersations, have different

trade-offs

It's important to learn which data structures are appropriate for the problem

at hand

Membership/containment: sets!

Ordering: lists!

Association/mapping: maps!

COLLECTIONS

26

	Java Collections
	The Java Collection Interface
	Properties of Collections
	The Collection Interface: Key Operations
	The Collection Interface: Operations
	Ordered Data Structures
	Affordances & Arrays
	Ordered Sorted
	Sorting Yourself Out
	Sorting Yourself Out
	The Comparable Interface
	The Comparable ADT: compareTo
	Making an Object Sortable
	Making an Object Sortable
	Sorted Data Structures
	The Comparator ADT
	The Comparator ADT: compare
	Example: Why?
	Example: Why?
	Example: Using a Comparator
	The Map Interface
	The Map Interface: Operations
	Collection Exercises
	Collection Exercises
	Collection Exercises
	Collection Exercises
	Summary

