
Graphs:
Introduction
CIT5940

Applications

1. Modeling connectivity in computer and communications networks

2. Representing an abstract map as a set of locations with distances between
locations. Used to compute shortest routes between locations

3. Modeling flow capacities in transportation networks to find which links create
the bottlenecks

4. Finding a path from a starting condition to a goal condition This is a common
way to model problems in artificial intelligence applications and computerized
game players

5. Modeling computer algorithms, to show transitions from one program state to
another

6. Finding an acceptable order for finishing subtasks in a complex activity, such as
constructing large buildings

Definitions

● A graph consists of:

○ A set of nodes

○ A set of edges where an edge connects two nodes

● Flexible data structure

Definitions

● A graph G=(V,E) consists of:

○ A set of vertices V

○ A set of edges E, such that each edge in E is a

connection between a pair of vertices in V

● The number of vertices is written |V|

● The number of edges is written |E|

○ Where 0 ≤ |E| ≤ |V|2−|V|

Definitions

● Undirected graph: A graph whose edges do not have

a direction

Definitions

● Directed graph: A graph whose edges –each- are

directed from one of its defining vertices to the

other.

Definitions

● Labeled graph: A graph with labels associated with

the nodes

Definitions

● An edge connecting vertices a and b is said to be incident with vertices a

and b. And a and b are said to be adjacent (neighbors).

Definitions

● The degree of a vertex is its number of neighbors

● In a directed graph

○ The in degree is the number of edges directed into the vertex

○ The out degree is the number of edges directed out of the vertex

Definitions

● A sequence of vertices v1,v2,...,vn forms a path of

length n−1 if there exist edges from vi to vi+1 for

1≤i<n.

● A path is a simple path if all vertices on the path are

distinct

Definitions

● A cycle is a path of length three or more that

connects some vertex v1 to itself.

● A cycle is a simple cycle if the path is simple, except

for the first and last vertices being the same.

Definitions

● A graph without cycles is called an acyclic graph

● A directed graph without cycles is called a directed acyclic graph or DAG

Definitions

Definitions

Representations: Adjacency Matrix

●

Adjacency Matrix: undirected graph

Adjacency Matrix : directed graph

Representations: Adjacency List

● The adjacency list is an array of linked lists

● The array is |V| items long, with position i storing a pointer to the linked

list of edges for Vertex vi

● The linked list at position i represents the edges by the vertices that are

adjacent to Vertex vi

● Space requirement is O(|V| + |E|)

Adjacency List: undirected graph

Adjacency List : directed graph

Adjacency List : directed graph

Runtime for printing all out-neighbors of a vertex v?

Adjacency List : directed graph

Runtime for printing all out-neighbors of a vertex v?

- Cost of looking up v in the outer list (O(V) if unsorted, O(log V) if sorted
- Cost of enumerating all neighbors (O(V) in the worst case, O(|out-neighbors(v)|) is the tight bound

Adjacency List : directed graph

Runtime for printing all in-neighbors of a vertex v?

Adjacency List : directed graph

Runtime for printing all in-neighbors of a vertex v?

O(E) in general case; have to inspect each edge in every sub-array!

Adjacency List : directed graph

Keep the inverted adjacency list around, too! Twice the space, but faster lookups in both directions.

Adjacency List : directed graph

In practice, we’ll also usually use a HashMap<Vertex, List<Vertex>> as opposed to
a List<Vertex<List>>:
More overhead but faster lookups, especially when hard to sort vertices.

Graph Traversals

Depth-First Search (DFS)

● Whenever a vertex v is visited during the search, DFS will recursively visit

all of v 's unvisited neighbors

● DFS can be implemented using a stack:

○ The neighbor(s) are pushed onto the stack

● The next vertex to be visited is determined by popping the stack and

following that edge

● The total cost is O(|V|+|E|)

Breadth-First Search (BFS)

● Whenever a vertex v is visited during the search, BFS will visit all of v 's

neighbors before visiting vertices further away

● BFS can be implemented using a queue

○ The neighbor(s) are enqueued

● The next vertex to be visited is determined by dequeuing the queue and

following that edge

● The total cost is O(|V|+|E|)

Visitor Pattern & Searches

● Common uses for searching:

○ finding a node matching some criterion

○ modifying all nodes accessible from a given node

○ topological sort

● In each case, the basic pattern of the search stays the same

○ Good use case for a visitor pattern

● Essentials of the Visitor Pattern:

○ Interface with one method: visit(Vertex v)

Strategy Pattern & Searches

● Common searches:

○ BFS

○ DFS

○ Dijkstra’s/Bellman-Ford for Shortest Path

○ Greedy searches

● In each case, the basic behavior of the search is the same, varying only the

order that we dequeue vertices from the frontier queue.

● Essentials of the Strategy Pattern:

○ Interface with one method: execute()

Functional Interfaces & Java

● Interfaces with only one method are considered functional interfaces in

Java

● They can behave just like any normal interface, with implementing

classes…

● …or, they can be instantiated anonymously using method references &

lambda expressions

Method References

● System.out.println() is a method (println()) belonging to the System.out

class.

● To reference the method as a first-class object, we can write:

○ System.out::println

○ This is an object belonging to the abstract type Consumer<Object>

● Method references allow us to pass along methods as inputs to other

methods!

Lambda Expressions

● A way to write short functions without specifying a name/signature

(e1, e2) -> e1 == e2 || e1.value == e2.value

formal parameter

name(s)

arrow token, signifying

the start of the function
body

a single expression

that will be evaluated;
this value will be the
return value of the

function.

Lambda Expressions

● A way to write short functions without specifying a name/signature

p -> p.getGender() == Person.Sex.MALE && p.getAge() >= 18 && p.getAge() <= 25

formal parameter

name(s)

arrow token, signifying

the start of the function
body

a single expression

that will be evaluated;
this value will be the
return value of the

function.

Challenge #1

Can you use method references to make the PrintVisitor class redundant?

Challenge #1

Can you use method references to make the PrintVisitor class redundant?

g.search(vertex, System.out::println)

Challenge #2

Can you use lambdas to define a Visitor that changes all vertex labels to

uppercase?

Challenge #2

Can you use lambdas to define a Visitor that changes all vertex labels to

uppercase?

g.search(joe, v -> v.label = v.label.toUpperCase());

Challenge #3

Can you use lambdas to define a Search Strategy that creates a PriorityQueue

for the search that chooses the next node from the frontier based on the label

of the node?

	Slide 1: Graphs: Introduction
	Slide 2: Applications
	Slide 3: Definitions
	Slide 4: Definitions
	Slide 5: Definitions
	Slide 6: Definitions
	Slide 7: Definitions
	Slide 8: Definitions
	Slide 9: Definitions
	Slide 10: Definitions
	Slide 11: Definitions
	Slide 12: Definitions
	Slide 13: Definitions
	Slide 14: Definitions
	Slide 15: Representations: Adjacency Matrix
	Slide 16: Adjacency Matrix: undirected graph
	Slide 17: Adjacency Matrix : directed graph
	Slide 18: Representations: Adjacency List
	Slide 19: Adjacency List: undirected graph
	Slide 20: Adjacency List : directed graph
	Slide 21: Adjacency List : directed graph
	Slide 22: Adjacency List : directed graph
	Slide 23: Adjacency List : directed graph
	Slide 24: Adjacency List : directed graph
	Slide 25: Adjacency List : directed graph
	Slide 26: Adjacency List : directed graph
	Slide 27: Graph Traversals
	Slide 28: Depth-First Search (DFS)
	Slide 29: Breadth-First Search (BFS)
	Slide 30: Visitor Pattern & Searches
	Slide 31: Strategy Pattern & Searches
	Slide 32: Functional Interfaces & Java
	Slide 33: Method References
	Slide 34: Lambda Expressions
	Slide 35: Lambda Expressions
	Slide 36: Challenge #1
	Slide 37: Challenge #1
	Slide 38: Challenge #2
	Slide 39: Challenge #2
	Slide 40: Challenge #3

