
Open & Bucket
Hashing

CIT 5940 Spring 2025 @ University of Pennsylvania

Problem Solving Activity on Friday!

Binary Search Trees, Tries, Little Bit of Hashing

1. Manually building a BST to have a given shape given a bunch of numbers

2. Writing code to use BST's insert method to code a short function that builds a

BST that has a given shape.

3. Understanding about how the shape of a Trie depends on the words contained

inside of it

4. One short theoretical question about bucket hashing, which we will cover today.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 2

Introduction

Hashing: a method for storing and retrieving records from a database based on some

attribute value of the records.

Generate a hopefully unique key for each record

Insertion, deletion, and search is based on the key value of the record

Careful implementation of hashing allows for constant time insertion, deletion, and

search on average.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 3

Hashing for Storage:

The Model

Imagine that you're searching for a book in a

gigantic library.

The books are not ordered meaningfully by

title, author, ISBN, or anything

Instead, to find a book, you use a "crystal

ball" which tells you the shelf number

where the book is located.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 4

Introduction

Appropriate for

applications where all search is done by exact-match queries

Not Appropriate for

applications where multiple records with the same key are permitted

answering range searches

Java Implementations: Hashtable, HashMap, HashSet

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 5

Hashing, Hash Systems, and Hash Tables

Hashing creates some slightly overloaded terms. Some disambiguation:

Hashing refers to the process of applying a hash function to a key.

A hash function is a mathematical object that generates maps a key to an integer.

A hash table is a data structure that stores records in an array. A record's position

is determined by applying the hash function to the record's key.

A hash system is a system that uses a hash table to store records &

resolve collisions.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 6

Defining a Hash System

A hash system consists of a hash table and a hash function.

A hash table is an array of slots. Depending on the hash system, the slots may

contain records or auxilliary data structures.

We use to denote the number of slots in a hash table.

A hash function maps a key to a slot in the hash table.

 refers to a slot in the hash table such that .

In a given hash system, a record with key is stored at .

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 7

The Crystal Ball: SUHA

The Simple Uniform Hashing Assumption is a lie we tell ourselves in order to make

analysis of hash-based storage easier.

Main idea:

There exists (and we can use in constant time) a function that unformly distributes

inputs into slots

Each item is equally likely to be placed into any slot

Extraordinarily hard to do exactly this given 1. the kind of data you and 2. the desired

size of the table. But we can get close.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 8

Collisions

Collision: when two search keys are mapped by the hash function to the same slot in

the hash table

Finding a record with key in a database organized by hashing follows a two-

step procedure:

Compute the table location

Starting with slot , locate the record containing key using (if necessary) a

collision resolution policy

Under SUHA, .

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 9

Hashing & Collisions: An Example

First, we hash to find its slot in the table. h() = 3 .

We can place in slot 3.

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 10

Note
Then, we hash :dog:to find its slot in the table. $h(:dog:) = 3$.

Hashing & Collisions: An Example

Then, we hash to find its slot in the table. h() = 8 .

We can place in slot 8.

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 11

Hashing & Collisions: An Example

Then, we hash to find its slot in the table. h() = 0 .

We can place in slot 0.

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 12

Hashing & Collisions: An Example

Then, we hash to find its slot in the table. h() = 3 .

We can try to place in slot 3. But it's filled!

This is a collision—where would we put so that:

we can find it again?

we don't overwrite any other records?

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 13

Hashing & Collisions: An Example

We can try to place in slot 3. But it's filled!

Could just put it in the next free slot...

To find again, take h() = 3 , see that it's filled with something else, then try going

to the next slot.

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 14

Hashing & Collisions: An Example

We can try to place in slot 3. But it's filled!

Could "squeeze" it into the slot with the cat.

To find again, take h() = 3 , see that it's filled with multiple items, then search

through those items.

0 1 2 3 4 5 6 7 8 9

[,]

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 15

Collision Resolution Policies

Hashing and storing is simple, but collision resolution comes with a lot of tradeoffs!

Open hashing: store multiple records in the same slot by using auxiliary

data structures.

 Not all of the information is stored in the table itself

Closed hashing: store one record per slot, and use a collision resolution policy to

find a new slot for a record that collides with an existing record.

 All of the information is stored in the table itself

More (open) slots require more (unused) space, but allows for fewer collisions.

Fewer slots requires less space, but may lead to more collisions, requiring more

time to resolve.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 16

Load Factor

Used to decide when to rehash (resize) the hash table

Load factor =

 = number of records in the hash table

 = the number of slots in the hash table

Resize and rehash the hash table when the load factor exceeds a certain threshold to

keep it as low as possible.

Under SUHA, .

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 17

Open Hashing

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 18

Open Hashing

A hash system where multiple records might be associated with the same slot of a

hash table.

A linked list or other data structure is used to store the records in a slot

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 19

Example

Open Hashing, using a simple mod

(%) as hash function:

, with =

the number of slots in the

hash table.

If we insert the keys: 157, 313,

930, 207, 979, 100, 977

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 20

Note
Walk over insertion, searching, and deletion.

Open Hashing

Insertion:

Compute the hash value of the key

Insert the record at the head of the linked list at the hash value

Searching:

Compute the hash value of the key

Search the linked list at the hash value

Deletion:

Compute the hash value of the key

Delete the record from the linked list at the hash value

Runtimes??

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 21

Open Hashing

Insertion: on average, in the worst case

Compute the hash value of the key

Insert the record at the head of the linked list at the hash value

Searching: on average, in the worst case

Compute the hash value of the key

Search the linked list at the hash value

Deletion: on average, in the worst case

Compute the hash value of the key

Delete the record from the linked list at the hash value

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 22

Java HashMap

CIT 5940 Spring 2025 @ University of Pennsylvania 23

HashMap

Hash function: bitwise AND (&) operator

public static int findSlot(Object toHash) {
 slot = array_length & key.hashcode()
}

Open Hashing System: collisions are added to a data structure stored in each slot.

Data structure is a list when small, but a BST when above eight elements

 in the worst case for insert/delete/contains

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 24

Closed Hashing

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 25

Closed Hashing

A hash system where all records are stored in slots inside the hash table.

Implementations:

Closed hashing with buckets

Closed hashing with no buckets

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 26

Closed Hashing with Buckets

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 27

Bucket Hashing

Slots of the hash table are grouped into buckets

If the hash table has slots and buckets (>), each bucket will consist of

 slots.

Additionally, the table will include an overflow bucket: the bucket into which a

record is placed if the bucket containing the record's home slot is full

Overflow bucket is often considered to have infinite capacity—an ArrayList ,

perhaps

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 28

Bucket Hashing: Insertion

Hash the key to determine which bucket should contain the record

If the bucket is not full, insert the record in the first available slot

If the bucket is full then store the record in the first available slot in the

overflow bucket

Worst case runtime? Average case, assuming SUHA?

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 29

Bucket Hashing: Insertion

Assuming that duplicates aren't allowed...

Worst Case: all elements end up in the same bucket, so we have to pass over every

single element to verify we aren't adding it twice.

Average Case: if no overflow, then elements distributed over buckets uniformly.

 Once overflow, linear in length of the overflow bucket.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 30

Bucket Hashing: Searching

Hash the key to determine which bucket should contain the record.

The records in this bucket are then searched.

If the desired key value is not found and the bucket still has free slots, then the

search is complete.

If the bucket is full, then search the overflow bucket until the record is found or all

records in the overflow bucket have been checked.

Exactly the same runtime as insertion: as long as there is space remaining; linear

cost in overflow beyond that.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 31

Bucket Hashing: Why?

In the limit, no better than searching through a linear structure. But!

If you know how many elements you have and a hash function that approximates

the SUHA, then you can use linear space for constant time operations.

Can always resize & rehash if grows—picking a suitably large new table size

guarantees small cost per element.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 32

Reminder: Collisions =

We hash to find its slot in the table. h() = 3 .

We can try to place in slot 3. But it's filled!

This is a collision—where would we put so that:

we can find it again?

we don't overwrite any other records?

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 33

Collision Resolution Policy

The process of finding the proper position in a hash table that contains the

desired record.

Used when searching/inserting if the hash function returns a slot that's occupied by

a different item.

Must admit a reversable procedure: the different slot we find needs to be traceable

back to the original slot we tried to use.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 34

Closed Hashing with No Bucket

Closed no auxiliary lists/trees allowed!

No Bucket all records have to live in the table array!

Must have some collision resolution policy to figure out what happens when you try to

use a slot that's occupied!

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 35

Picking a Hash Function

Reminder: SUHA imagines that we have a perfectly uniform distribution of keys to slots.

(This is more or less satisfied if we are hashing uniformly random integers with %)

So, for our examples:

int home = item.hashcode() % array_size

Call it home instead of "slot" because this is no longer guaranteed to be the actual slot

where we end up.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 36

Collision Resolution with Probing

Goal: find a free slot in the hash table when the home position for the record is

already occupied

Idea: Use a probe function to calculate some offset relative to the home position

based on the key and the probe count.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 37

Note
```java
public static int collisionResolution(int home, int key, int count) {
  return home + probe(key, count);
}

public static int probe(int key, int count) {
  // return some fixed offset depending on the key and the probe number
}
```


Closed Hashing Insertion w/ Collision Resolution

The probe function returns an offset from the original home position

1. Find home slot:

 is the hash function

 is the key

2. If occupied, iteratively calculate positions the probe sequence until an empty slot

is found with

 is our probe function

(Try , then try probing with , , ...)

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 38

Collision Resolution Policies

Linear probing

Linear probing by steps

Pseudo-random probing

Quadratic probing

Double hashing

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 39

Linear Probing

Works by moving sequentially through the hash table from the home .

Probe function: p(k, i) = i

Sequence of slots to try: home , home + 1 , home + 2 , home + 3 , …

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 40

Reminder: Collisions =

Let's hash 13 , 8 , 103 , 9 , 33 using the hash.

13 % 10 = 3 , which is free

0 1 2 3 4 5 6 7 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 41

Reminder: Collisions =

Let's hash 13 , 8 , 103 , 9 , 33 using the hash.

8 % 10 = 8 , which is free

0 1 2 3 4 5 6 7 8 9

13

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 42

Reminder: Collisions =

Let's hash 13 , 8 , 103 , 9 , 33 using the hash.

103 % 10 = 3 , which is full

3 + p(k, 1) = 3 + 1 = 4 , which is free

0 1 2 3 4 5 6 7 8 9

13 8

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 43

Reminder: Collisions =

Let's hash 13 , 8 , 103 , 9 , 33 using the hash.

9 % 10 = 9 , which is free

0 1 2 3 4 5 6 7 8 9

13 103 8

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 44

Reminder: Collisions =

Let's hash 13 , 8 , 103 , 9 , 33 using the hash.

33 % 10 = 3 , which is full

3 + p(k, 1) = 3 + 1 = 4 , which is full

3 + p(k, 2) = 3 + 2 = 5 , which is free

0 1 2 3 4 5 6 7 8 9

13 103 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 45

Reminder: Collisions =

Let's check if 33 is present...

33 % 10 = 3 , that slot does not have the target, but next slot in probe sequence

might have it...

3 + p(k, 1) = 3 + 1 = 4 , that slot does not have the target, but next slot in

probe sequence might have it...

3 + p(k, 2) = 3 + 2 = 5 , which is the target! DONE, 33 is present.

0 1 2 3 4 5 6 7 8 9

13 103 33 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 46

Reminder: Collisions =

Let's check if 18 is present...

18 % 10 = 8 , that slot does not have the target, but next slot in probe sequence

might have it...

8 + p(k, 1) = 8 + 1 = 9 , that slot does not have the target, but next slot in

probe sequence might have it...

8 + p(k, 2) = 8 + 2 -> 0 , which is empty! DONE, 18 is not present.

0 1 2 3 4 5 6 7 8 9

13 103 33 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 47

Observations

Hashing repeatedly to the same home slot leads to long chains of occupied slots.

Can't finish insert/search operations until we find an empty slot in a

probe sequence.

Slots filled by hashing to unrelated home slots can interfere in the insertion/search

for other elements.

putting 9 in its home slot made searching for a key that hashed to home slot

8 harder!

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 48

Primary Clustering

The tendency in certain collision resolution methods to create clustering (groups of

occupied slots) in sections of the hash table

Happens when a group of keys follow the same probe sequence during

collision resolution

Primary clustering leads to empty slots in the table to not have an equal probability

of receiving the next record inserted

Always want for all free slots .

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 49

Primary Clustering

Assuming SUHA, what's the probability that our next element ends up in slot 6?

0 1 2 3 4 5 6 7 8 9

13 103 33 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 50

Primary Clustering

Assuming SUHA, what's the probability that our next element ends up in slot 6?

Home slots of 3, 4, 5, and 6 all lead there!

0 1 2 3 4 5 6 7 8 9

13 103 33 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 51

Primary Clustering

Linear probing leads to primary clustering in a big way!

Linear probing is one of the worst collision resolution methods.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 52

Linear Probing by Steps

Goal: avoid primary clustering / improve linear probing

Idea: skip slots by some constant c other than 1

Probe function: p(k, i) = ci

 must be relatively prime to to generate a linear probing sequence that visits

all slots in the table

i.e. gets us [0, 2, 4, 6, 8] but gets us [0, 7, 4, 1, 8,

5, 2, 9, 6, 3] starting from 0.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 53

Linear Probing by Steps

Hash 10 , then 40 using

10 goes in slot 0

0 1 2 3 4 5 6 7 8 9

13 103 33 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 54

Linear Probing by Steps

Hash 10 , then 40 using

40 goes in slot 0 , which is full. So try 7 , which is empty!

0 1 2 3 4 5 6 7 8 9

10 13 103 33 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 55

Linear Probing by Steps

Hash 10 , then 40 using

40 goes in slot 0 , which is full. So try 7 , which is empty!

0 1 2 3 4 5 6 7 8 9

10 13 103 33 40 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 56

Linear Probing by Steps

"Is 37 present?"

Check slot 7 , which is full. Check slot 7 + 7 % 10 = 4 , which is full. Check 4 + 7

% 10 = 1 , which is empty. 37 is not present!

0 1 2 3 4 5 6 7 8 9

10 13 103 33 40 8 9

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 57

Are We Solving Primary Clustering?

1. What is the sequence of slots probed when hashing a record with home slot of 0

with and ?

2. What is the sequence of slots probed when hashing a record with home slot of 3
with and ?

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 58

Are We Solving Primary Clustering?

1. What is the sequence of slots probed when hashing a record with home slot of 0
with and ?

i. 0, 3, 6, 9, 2, 5, 8, 1, 4, 7

2. What is the sequence of slots probed when hashing a record with home slot of 3
with and ?

i. 3, 6, 9, 2, 5, 8, 1, 4, 7, 0

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 59

Linear Probing With Steps: No Good!

It is true that records with adjacent home positions will not follow the same probe

sequence. BUT! Records offset by will follow the same probe sequence.

Clusters will not be formed of adjacent cells, but primary clustering still happens!

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 60

Quadratic Probing

Goal: avoid primary clustering by creating probe sequences that have little overlap

Idea: skip slots by increasingly large step sizes

Probe function: (a quadratic function)

Kind of hard mathematically to choose constants such that the sequence covers

the table

Solutions:

If is a power of 2, then use

If is prime, use

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 61

Overlapping Probe Sequences

Assume and

1. What's the probe sequence for hashing with home slot of 5?

2. What's the probe sequence for hashing with home slot of 6?

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 62

Overlapping Probe Sequences

Assume and

1. What's the probe sequence for hashing with home slot of 5?

i. 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, ...

2. What's the probe sequence for hashing with home slot of 6?

i. 6, 7, 0, 5, 2, 1, 2, 5, 0, 7, 6, ...

We don't hit all of the possible locations, but at least the sequences aren't identical!

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 63

Random Probing(?)

Goal: avoid primary clustering by creating probe sequences that have little overlap

Idea: just choose a random new location

Probe function: (int) (Math.random() * M)

Bare minimum clustering...

... but impossible to retreive an element once it's been added. (If there's a collision,

how would we know that the next probe that we get goes to the same location?)

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 64

Pseudo-Random Probing(?)

Goal: avoid primary clustering by creating probe sequences that have little overlap

Idea: Generate an arbitrary permutation of [1, M-1] and use those as probe offsets

Probe function:

Positive benefits of random clustering, no issues with "reproducibility"

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 65

Overlapping Probe Sequences

Assume permutation = {3, 8, 1, 4, 2, 9, 0, 5, 7, 8, 6}

1. What's the probe sequence for hashing with home slot of 5?

2. What's the probe sequence for hashing with home slot of 6?

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 66

Overlapping Probe Sequences

Assume permutation = {3, 8, 1, 4, 2, 9, 0, 5, 7, 8, 6}

1. What's the probe sequence for hashing with home slot of 5?

i. 8, 3, 6, 9, 7, 4, 5, 0, 2, 3, 1

2. What's the probe sequence for hashing with home slot of 6?

i. 9, 4, 7, 0, 8, 5, 6, 1, 3, 4, 2

Easy to hit all locations, not much sequence overlap!

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 67

Eliminating Primary Clustering!

Pseudo-random and Quadratic Hashing both successfully eliminate primary clustering!

Overlap in probe sequence is, on average, pretty low

But:

If home(k1) == home(k2) , two keys will always follow the same probe

sequence.

Probe sequences are entirely functions of the home slot—p(k, i) ignores k
always.

Both lead to secondary clustering—if there's a cluster in home slots, there will be

clustering down the sequence, too.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 68

Eliminating Secondary Clustering?

Goal: Make probe sequences diverge with the same home key

Idea: Hash again!

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 69

Number Theory

Important that:

outputs of the second hash remain in the range [1, M-1]

impossible to output 0 or M—the "offset" for the probe would be no offset at all

The first hash for the home slot is easy to think about, the second one takes a little

more careful planning.

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 70

Prime Table Double Hashing

Use a prime value of !

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 71

Quick Analysis

HASHING I

CIT 5940 Spring 2025 @ University of Pennsylvania 72

	Open & Bucket Hashing
	Problem Solving Activity on Friday!
	Introduction
	Hashing for Storage: The Model
	Introduction
	Hashing, Hash Systems, and Hash Tables
	Defining a Hash System
	The Crystal Ball: SUHA
	Collisions
	Hashing & Collisions: An Example
	Hashing & Collisions: An Example
	Hashing & Collisions: An Example
	Hashing & Collisions: An Example
	Hashing & Collisions: An Example
	Hashing & Collisions: An Example
	Collision Resolution Policies
	Load Factor
	Open Hashing
	Open Hashing
	Example
	Open Hashing
	Open Hashing
	Java HashMap
	HashMap
	Closed Hashing
	Closed Hashing
	Closed Hashing with Buckets
	Bucket Hashing
	Bucket Hashing: Insertion
	Bucket Hashing: Insertion
	Bucket Hashing: Searching
	Bucket Hashing: Why?
	Reminder: Collisions = 🙁

	Collision Resolution Policy
	Closed Hashing with No Bucket
	Picking a Hash Function
	Collision Resolution with Probing
	Closed Hashing Insertion w/ Collision Resolution
	Collision Resolution Policies
	Linear Probing
	Reminder: Collisions = 🙁
	Reminder: Collisions = 🙁
	Reminder: Collisions = 🙁
	Reminder: Collisions = 🙁
	Reminder: Collisions = 🙁
	Reminder: Collisions = 🙁
	Reminder: Collisions = 🙁

	Observations
	Primary Clustering
	Primary Clustering
	Primary Clustering
	Primary Clustering
	Linear Probing by Steps
	Linear Probing by Steps
	Linear Probing by Steps
	Linear Probing by Steps
	Linear Probing by Steps
	Are We Solving Primary Clustering?
	Are We Solving Primary Clustering?
	Linear Probing With Steps: No Good!
	Quadratic Probing
	Overlapping Probe Sequences
	Overlapping Probe Sequences
	Random Probing(?)
	Pseudo-Random Probing(?)
	Overlapping Probe Sequences
	Overlapping Probe Sequences
	Eliminating Primary Clustering!
	Eliminating Secondary Clustering?
	Number Theory
	Prime Table Double Hashing
	Quick Analysis

