
Heaps &

Priority Queues

The Problem:

Selling Concert

Tickets

We want to sell tickets to a group of

fans. How do you prioritize who gets a

chance to buy tickets?

We want to be able to register

every person's interest

As long as tickets remain, we

want to sell them to the person

in line with the highest priority.

BINARY HEAPS

1

The Problem: Selling Concert Tickets

We could use a List or FIFO Queue to store the people who want to buy tickets.

Hard to order based on priority other than FIFO

Slow to both retrieve & remove members of a linear structure

BINARY HEAPS

2

The Problem:

Selling Concert

Tickets

We could use a TreeSet to store

the people who want to buy tickets.

Easier to store and order people

by priority

Still to register &

retrieve all interested fans.

 can be very big

BINARY HEAPS

3

The Problem: Selling Concert Tickets

Some further optimizations:

We don't care about the relative ordering of the people who are not at the front of

the line

It's possible that the number of tickets may be much smaller than the number of

interested fans , so if we can pay some costs per ticket rather than per fan, that

would be helpful

BINARY HEAPS

4

Formalizing the Interface

Goal Method Notes

Add a new buyer to

the queue
boolean add(Buyer b) Duplicates?

Check if a buyer is

already present

boolean

contains(Object o)

Sometimes preferable to offload this to a

different data structure

Get the highest

priority buyer
Buyer poll()

Sometimes called

findMin() /findMax()

BINARY HEAPS

5

Note
For maintaining a ticket queue, you might not worry about people joining multiple times. Instead, just refuse the transaction if they have already purchased tickets.

Towards a Priority Queue

A Priority Queue is a data structure that supports the previous operations, plus other

related ones listed here.

Implements the Queue interface, so it is ordered

Instead of ordering by position, we order by "priority"

can be the natural ordering of the contents, or defined using

custom comparator

Implemented using a Heap data structure

Kind of a tree, kind of linear

BINARY HEAPS

6

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

Complete Binary Tree

Recall: a Complete Binary Tree is a binary tree where the nodes are filled in row by

row, with the bottom row filled in left to right.

Theorem: There is only one complete binary tree of n nodes for any value of n.

BINARY HEAPS

7

Note
Talk about quick sort

Height of a Complete Binary Tree

Other Theorem: The height of a complete binary tree of nodes is

Idea:

 is between two consecutive powers of two:

If a tree has a height of , we can store elements

, so height of is all that's necessary

, so and therefore

BINARY HEAPS

8

Complete Binary Tree as an Array

Since the shape of a complete binary tree is totally determined by its size, we don't

have to actually store a tree with nodes.

Records are stored in an array, using indices counted from top to bottom, left to right.

The root is at index 0

The left child of the root is at index 1

The right child of the root is at index 2

The left child of the left child of the root is at index 3

...

BINARY HEAPS

9

Array Representation

Exercises

1. Draw the tree-based

representation of the complete

binary tree that is represented by

the array [6 4 5 3 1 2]

2. Come up with the array

representation of the complete

binary tree on the right.

BINARY HEAPS

11

Note
background_color: white

Ancestors, Descendants, and Siblings

Given a node at position in the array representation of a complete binary tree of

 nodes,

its parent is at position

its left child is at position

its right child is at position

its left sibling is at position if is even and

its right sibling is at position if is odd and

BINARY HEAPS

12

Takeaways

We can represent a complete binary tree as an array

no pointer overhead

fast traversal using simple arithmetic

We can resize the underlying array as needed

keep unused array space as low as possible

expand when needed, but amortization keeps time cost low

BINARY HEAPS

13

Binary Heaps

Invented by J. W. J. Williams in 1964.

Complete Binary Trees with additional rules about ordering.

Implemented using the complete binary trees array representation.

Values in a heap are partially ordered

The ordering relationship is between the value stored at any node and the values of

its children

BINARY HEAPS

14

https://canvas.instructure.com/courses/8559589/assignments/43525780?module_item_id=100992647

Binary Heaps

Two types of heaps

Max Heap: every node stores a value that is greater than or equal to the value of

either of its children.

The root stores the maximum of all values in the tree.

Min Heap: every node stores a value that is less than or equal to that of

its children

The root stores the minimum of all values in the tree.

No guarantees about ordering relative to siblings!

BINARY HEAPS

15

Binary Heap & Priority Queue

Priority Queues only require us to know the highest priority item—good for a

partially sorted Data Structure like a Heap.

Min/Max Heap Operations:

add

poll
Min Heap: the smallest value

Max Heap: the largest value

heapify : generate a min/max heap from an array of values

Conclusion: use a heap to implement a priority queue.

BINARY HEAPS

16

Friday's Recitation Activity

Rules of engagement:

30 minutes at end of recitation

No leaving early! Sit still, please.

Don't sit next to each other. Don't use your phone.

Topics:

1. Encoding/decoding a message using a Huffman Tree

2. Tree Traversal

3. Array—Tree Duality of a Heap

4. Executing Heap Operations

BINARY HEAPS

17

How to Maintain the Heap Property?

Two crucial operations, siftUp and siftDown , are used to maintain the heap

property.

Efficient operations that take local violations of the heap property and fix them.

They are used in add and poll operations.

They also allow us to modify the priority of an existing item and find a new home

for it.

BINARY HEAPS

18

Binary Heap: siftUp

As long as a node is greater than its parent…

swap it with its parent

siftUp on the same node in the new location

BINARY HEAPS

19

private void siftUp(int index) {
 while (index > 0) {
 int parent = parent(index);
 Buyer key = heapArray[index];
 Buyer parentKey = heapArray[parent];

 // Check for max heap property violation
 if (key.compareTo(parentKey) <= 0) {
 return; // if this is <= parent, then no more sifting to do
 } else { // otherwise, swap this with parent and keep moving up
 heapArray[index] = parentKey;
 heapArray[parent] = key;
 index = parent;
 }
 }
}

siftUp Runtime Analysis:

Each swap is a constant time operation

only as many swaps as the depth of the heap in the worst case

depth of a complete binary tree is

 siftUp is

BINARY HEAPS

21

Binary Heap: siftDown

As long as a node is less than one of its children

swap it with its greater child

this way, each local swap maintains the heap property

siftDown on the same node in the new location

restore the global heap property

Runtime analysis:

Each swap is a constant time operation

only as many swaps as the depth of the heap in the worst case

 siftDown is

BINARY HEAPS

22

Heap: add

Put the new value at the end of the array

Increment the size of the heap

call siftUp on that new value

recurse upwards as necessary

Runtime analysis: in the worst case.

BINARY HEAPS

23

Note
Largest value is a leaf node. why

Heap: add

BINARY HEAPS

public boolean add(E e) {
 // resize if needed
 if (size == heapArray.length) {
 grow();
 }
 // Add the new value to the end of the array
 heapArray[size++] = e;
 // sift up from the index we added to
 siftUp(size - 1);
 return true;
}

24

Note
Largest value is a leaf node. why

Heap: remove

Swap the value at the front of the array with the value at the end of the array

Decrement heap size

Call siftDown on that root

Recurse downwards as necessary

Runtime analysis: in the worst case.

BINARY HEAPS

25

Note
Largest value is a leaf node. why

Heap: poll

BINARY HEAPS

public E poll() {
 // Save the max value from the root of the heap
 E maxValue = (E) heapArray[0];
 // Move the last item in the array into index 0
 E replaceValue = (E) heapArray[--size];
 if (size > 0) {
 heapArray[0] = replaceValue;
 // Sift down to restore max heap property
 siftDown(0);
 }
 return maxValue;
}

26

Note
Largest value is a leaf node. why

Activity

1. Draw the MinHeap that results when you insert items with keys 3, 4, 1, 6, 9, 5, 7, 2

2. Rebuild the above tree after removing the (smallest) value at the top of the heap

3. Using the new heap, remove the value at position 1

BINARY HEAPS

27

Array Heapification

Goal: build a heap from any array of Comparable records

Implementation: For each record in the first half of the array, siftDown the record

We can avoid calling siftDown on the second half of the array.

Everything in the second half is a leaf, which is already a valid heap.

This builds a heap.

siftDown creates a valid heap rooted at the location we call it on provided

that the left and right subtrees are also heaps

If we siftDown starting on the last non-leaf node and work our way up, the

heap property is maintained at each step.

BINARY HEAPS

28

Array Heapification Runtime Analysis

(Assume a full and complete binary tree for ease of analysis)

siftDown() requires many swaps, where is the height of the

heap

At any height , the number of nodes is at most

There is one node at the root, two nodes at the next level, four nodes at the

next, etc.

Overall, the number of swaps to siftDown all non-leaves is:

BINARY HEAPS

29

Corrolaries

heapify is

Better to gather all records in an array and then heapify the array once than

to insert records one by one (Why?)

heapSort is a valid sorting algorithm

poll the root of the heap and siftDown the last record to the root

Repeat until the heap is empty

The records will be in ascending order

We can build our ticketing priority queue!

BINARY HEAPS

30

Designing a Ticketing Queue

Allow people to enter a ticket queue for tickets

Create a heap of size and heapify it.

poll the heap times to get the highest priority people and offer them each a

chance to buy a ticket

repeat until you've sold all tickets or the heap is empty

 runtime, which is better than the runtime of a TreeSet.

BINARY HEAPS

31

	Heaps & Priority Queues
	The Problem: Selling Concert Tickets
	The Problem: Selling Concert Tickets
	The Problem: Selling Concert Tickets
	The Problem: Selling Concert Tickets
	Formalizing the Interface
	Towards a Priority Queue

	Complete Binary Tree
	Height of a Complete Binary Tree
	Complete Binary Tree as an Array
	Array Representation
	Exercises
	Ancestors, Descendants, and Siblings
	Takeaways

	Binary Heaps
	Binary Heaps
	Binary Heap & Priority Queue
	Friday's Recitation Activity
	How to Maintain the Heap Property?

	Binary Heap: siftUp
	siftUp Runtime Analysis:

	Binary Heap: siftDown
	Heap: add
	Heap: add
	Heap: remove
	Heap: poll
	Activity
	Array Heapification
	Array Heapification Runtime Analysis
	Corrolaries
	Designing a Ticketing Queue

