
Indexing
CIT5940

You’re the CTO of a new tech company Feebo. Congrats on your 3M new

users and all of the hundreds of photos each of them like to share!

● Software runs on machines with RAM—program memory—that is fast

but comes in short supply.

● Data is stored in centers with thousands of hard drives—“disks”—that

are cheap but take a while to read from & write to.

The success of Feebo relies on your ability to write software that accesses

huge amount of information on disk, but quickly! Every millisecond spent

waiting for an app view to load is another few users dropped...

Program Memory vs. Disk Space

Introduction

● You’ll often work with a dataset that doesn’t entirely fit into your

program’s memory

● Indexing: the process of associating a search key with the location (on

disk) of a corresponding data record

○ Think of the index in a textbook: given a topic name, it tells you where to

go find more information about that topic.

● Remember: program memory is fast but expensive, whereas disk space

is slow and cheap.

○ Do as little seeking on disk as possible with carefully planned indices.

Index vs. Database

An index is used to enable fast queries over a database. A database is just some

collection of data records (like a data structure), which could take the form of:

● An array, a tree, or a hash system of records

● A RDB (a “classical” database) or a NOSQL DB (a “graph based” database)
Records

<Harry, Smith, sharry,

34893394, Lecturer>

<Eric, Fouh, efouh,

48983292, P.o.P>

<Vivian, Xi, vivianxi,

84293938, TA>

<Kevin, Dannenberg, kdann,

39483428, TA>

Creating a relational database in SQL
An array-like view of the records stored.

Index

● The index does not store the record

● The index stores a reference to the record

● A collection of records can be supported by multiple indices

Records

<Harry, Smith, sharry,

34893394, Lecturer>

<Eric, Fouh, efouh,

48983292, P.o.P>

<Vivian, Xi, vivianxi,

84293938, TA>

<Kevin, Dannenberg, kdann,

39483428, TA>

Vivian

Eric

Harry

Kevin

48983292

84293938

34893394

39483428

How do the two different indices here let you query the database?

How to Build an Index: Primary Key

● Each record of a database normally has a unique identifier

(field/attribute)

● Primary key: an attribute that uniquely identifies a record

○ ID number, Penn ID, Social Security Number, etc.

○ Often a number or a short string, which can be expressed using far fewer

bits compared to the full record.

● First idea: create a table of primary keys to search through

Primary Key Index

● Associates each primary key value with a pointer to the actual record on

disk

If I have n records and a PK index storing the keys in a sorted array, what runtime can I

expect when looking up a record by its primary key?

100K records with a

50KB picture each...

~1GB~1MB

Primary Key: Caveats

● Primary key often not known by the user of the database

● Primary key often not useful when searching for a record.

● Database searches often performed using attributes other than the

primary key (name, age, major, salary, etc.)

How to Build an Index: Secondary Keys

● Secondary key: a key field in a record where a particular key value might

be duplicated in multiple records

○ such as salary, name, major, etc.

● Secondary key is more likely to be used by a user as a search key than is

the record's primary key

○ Can’t be used to uniquely identify a record, though

Secondary Key

● Secondary key index: associates a secondary key value with the primary

key of each record having that secondary key value

Search using SK Index:

- Search for your secondary key to
obtain a reference to the batch of
primary keys whose records have that

secondary key
- For each potential primary key match,

look up the record associated with
that primary keys using a PK index

- If you have a match, you’re done!

- If there’s no match, keep looking at
the next possible primary key.

Database indexing

○ Linear indexing

○ Hash-based indexing

○ Tree-based indexing

Index File

● Index file: a file whose records consist of

key-value pairs where the values are

referencing the complete records stored in

another file

Where have we used an index file before in this course?

Linear indexing

● Linear index: index file organized as a sequence of key-value

pairs where the keys are in sorted order and the pointers

either

○ Point to the position of the complete record on disk (pictured)

○ Point to the position of the primary key in the primary key index

● Linear index amenable to binary search (efficient search)

Portion of main memory

where variable-length
records live

Sorted linear index,

like an array of (PK,
address) tuples

Linear indexing

● Linear index: index file organized as

a sequence of key-value pairs where

the keys are in sorted order and the

pointers either

○ Point to the position of the

complete record on disk

○ Point to the position of the

primary key in the primary key

index (pictured)

● The secondary key index is called

the inverted list

Saw this already; this is

clearly a linear structure

Is this PK part linear?

Linear indexing

● Linear index: index file organized as

a sequence of key-value pairs where

the keys are in sorted order and the

pointers either

○ Point to the position of the

complete record on disk

○ Point to the position of the

primary key in the primary key

index (pictured)

● The secondary key index is called

the inverted list

A better implementation: keep primary keys in

an array for better space efficiency.

Second-level index

● Linear Index as implemented so far is good when:

○ Keys are much smaller than records

○ The dataset is not too large

○ i.e. when the primary keys can all be kept in memory

● What if all primary keys can’t be kept in memory?

○ For large databases, linear index array/LL cannot fit in memory

○ Leads to expensive search because of several disk accesses

Second-level index

● Solution:

○ Second-level index stored in main memory (array)

■ NOT NECESSARILY RELATED TO SECONDARY KEYS: confusing name 

2. Each cell here

represents one
memory block

1. Here, the value in cell i

gives the minimum value in
block i.

3. Zoomed in view of block 1 from above, which is sorted

for easy retrieval of elements in that range.

Second-level index

● Solution:

○ Second-level index stored in main memory (array)

■ NOT NECESSARILY RELATED TO SECONDARY KEYS

○ Index file stored across several blocks (on disk)

○ Second-level index stores the first key value in the corresponding disk block

of the index file

○ Search requires 2 disk accesses: (1) load the block of the index file containing

the key, (2) retrieve the record

■ Better than a linear search over all records, which might have to load many

blocks

Linear indexing: Drawback

● Insertion and deletion are expensive

○ All secondary indices must be updated: the entire contents of the array might

be shifted

● Secondary key indexes contain duplicates: space expensive

Interlude: HW6

Goal of HW6

● Build a news aggregator that allows a user to view articles based on the terms

contained inside of them

● Tasks:
○ Reasoning about ethics and social impact

○ Using an RSS feel to crawl webpages (!!!)

○ Calculating TF-IDF for a corpus of documents

○ Creating an inverted index for each term-based search

○ Generating a term list and incorporating autocomplete

JSoup, RSS, & HTML

● We’re connecting to the internet and parsing documents hosted remotely.

● https://www.seas.upenn.edu/~cit5940/sample_rss_feed.xml

○ RSS, pictured above, is a markup language that allows you to specify a series of data

sources (LINK: rss for podcasts.)

https://www.seas.upenn.edu/~cit5940/sample_rss_feed.xml
https://gist.github.com/rodydavis/d0cb7a53d8deb42e92ae803a9dd48dbc

JSoup, RSS, & HTML

● But wait: how do you connect to the internet?
○ Download JSoup and add it to your Eclipse/IntelliJ project (instructions included in

writeup)

○ Then, to manipulate each link in an RSS feed:

Each of these is a link to another

page!

https://jsoup.org/

JSoup, RSS, & HTML

● But wait: how do you connect to the internet?
○ Download JSoup and add it to your project (instructions included in writeup)

○ You can manipulate each link in an RSS feed.

○ For each link, navigate to that page to find the list of terms contained in that page

○ Use JSoup the same way to manipulate HTML as the RSS document.

JSoup, RSS, & HTML

● But wait: how do you connect to the internet?
○ Download JSoup and add it to your project (instructions included in writeup)

○ You can manipulate each link in an RSS feed.

○ For each link, navigate to that page to find the list of terms contained in that page

○ Use JSoup the same way to manipulate HTML as the RSS document.

seas.upenn.edu/~cit5940/page1.html

(the document name)

<data, structures, linear, data,

structures, lists, arraylist, linkedlist,
stacks, queues>
(the list of terms)

Testing and the internet

● You should write your own test cases as always, but how to host your own RSS

feed for access?

https://www.python.org/downloads/

https://www.python.org/downloads/

Writing your own testing files

Keep the base URL for your pages http://localhost:8090 and write

whatever you want in the other .html files in your directory!

http://localhost:8090/

Writing your own testing files

Put whatever text you want in the bodies of your custom pages

for testing. This is page5.html

Using a terminal, navigate to the directory containing
your sample files.

Start a web server on port 8090

Friday’s Recitation Activity

● Hash a sequence of numbers using a few different hash

systems (e.g. linear probing, linear probing with steps,

quadratic probing, pseudo-random probing, double hashing)

● Identifying what a hash system is based on the probe

functions used

● Describing an algorithm for using a linear search to find

records in a range (not code)

TF-IDF: term frequency-inverse document frequency

● Term frequency: how often does a term appear in a particular document?

● Document frequency: how many documents does a particular term

appear in?

● - TF(t) = (Number of times term t appears in a document) / (Total

number of terms in the document)

- IDF(t) = log_e(Total number of documents / Number of documents

with term t in it)

- TF-IDF(t) = TF * IDF

Motto: A term has a high TF-IDF score in a given document if it appears a lot in

that document but not very often in every document.

TF-IDF: term frequency-inverse document frequency

● Document 1: "The solar system consists of the Sun and eight planets.

Mercury is the closest planet to the Sun, while Neptune is the furthest."

● Document 2: "Mercury is a chemical element with the symbol Hg. Mercury

is commonly known as quicksilver and was formerly named

hydrargyrum."

● Document 3: "The planet Venus has a thick atmosphere that traps heat,

making it the hottest planet in our solar system despite not being the

closest to the Sun."

● Document 4: "The Sun provides solar energy that can be captured using

photovoltaic panels and converted into electricity."

TF-IDF: term frequency-inverse document frequency

● Document 1: "The solar system consists of the Sun and eight planets.

Mercury is the closest planet to the Sun, while Neptune is the furthest."

● Document 2: "Mercury is a chemical element with the symbol Hg. Mercury

is commonly known as quicksilver and was formerly named

hydrargyrum."

● Document 3: "The planet Venus has a thick atmosphere that traps heat,

making it the hottest planet in our solar system despite not being the

closest to the Sun."

● Document 4: "The Sun provides solar energy that can be captured using

photovoltaic panels and converted into electricity."

TF of “the” in document 1: high or low?

IDF of “the: high or low?

TF-IDF: term frequency-inverse document frequency

● Document 1: "The solar system consists of the Sun and eight planets.

Mercury is the closest planet to the Sun, while Neptune is the furthest."

● Document 2: "Mercury is a chemical element with the symbol Hg. Mercury

is commonly known as quicksilver and was formerly named

hydrargyrum."

● Document 3: "The planet Venus has a thick atmosphere that traps heat,

making it the hottest planet in our solar system despite not being the

closest to the Sun."

● Document 4: "The Sun provides solar energy that can be captured using

photovoltaic panels and converted into electricity."

TF of “the” in document 1: high

IDF of “the”: low

TF-IDF: term frequency-inverse document frequency

● Document 1: "The solar system consists of the Sun and eight planets.

Mercury is the closest planet to the Sun, while Neptune is the furthest."

● Document 2: "Mercury is a chemical element with the symbol Hg. Mercury

is commonly known as quicksilver and was formerly named

hydrargyrum."

● Document 3: "The planet Venus has a thick atmosphere that traps heat,

making it the hottest planet in our solar system despite not being the

closest to the Sun."

● Document 4: "The Sun provides solar energy that can be captured using

photovoltaic panels and converted into electricity."

TF of “Mercury” in document 2: high or low?

IDF of “Mercury”: high or low?

TF-IDF: term frequency-inverse document frequency

● Document 1: "The solar system consists of the Sun and eight planets.

Mercury is the closest planet to the Sun, while Neptune is the furthest."

● Document 2: "Mercury is a chemical element with the symbol Hg.

Mercury is commonly known as quicksilver and was formerly named

hydrargyrum."

● Document 3: "The planet Venus has a thick atmosphere that traps heat,

making it the hottest planet in our solar system despite not being the

closest to the Sun."

● Document 4: "The Sun provides solar energy that can be captured using

photovoltaic panels and converted into electricity."

TF of “Mercury” in document 2: high

IDF of “Mercury”: high

This Assignment’s Indices:

● The full records are effectively <Term, Document, TF-IDF>
○ Some term

○ The document in which it appeared

○ The TF-IDF score for that term in that document (relative to this corpus)

● The first index you build looks up full records with the Document as the key

○ Useful for looking up the Terms that appear in a particular Document.

● The second index is inverted, mapping a Term to the Document it appears in
○ Useful for looking up in which Document a term had the highest (or lowest) TF-IDF

This Assignment’s Indices:

● Are all maps!

● Quick trick for iteration over maps:

○ Entry objects are defined as Key, Value pairs for a particular map

Linear Index

● An ordered (possibly sorted) collection of entries.
○ Usually traversed using linear search or binary search

○ Linear search:
■ Useful when the index is not sorted

■ Also useful for range queries

○ Binary search:
■ Only applicable when the index is sorted

■ Also useful for range queries

Linear Index

● Inserting a record into the database:

○ Unsorted index: O(1) update (just append the <key,

pointer> entry to the end of the index)

○ Sorted index: O(n) update (have to insert the entry

somewhere in the middle of the index, moving ~50%

of the entries on average)

● Deleting a record from the database:

○ Unsorted/Sorted indices: O(n) to find the entry and

then delete it from the array/list (shift the other stuff)

Linear Index

● Marking a record from the database as inaccessible:

○ Unsorted index: O(n) to find the entry and then tag it

as “inaccessible”

○ Sorted index: O(lg n) to find the entry and then tag it

as “inaccessible”

A common pattern: takes less time to “flag” an entry for

deletion than it does to actually remove it from your

system...

Indexing Example: Facebook’s Haystack

● Photo Storage infrastructure

● Disks are organized in volumes of fixed size

● Haystack index store consists of 2 files:

○ Haystack store (database)

○ Index file (used to rebuild the in-memory index)

● In-memory index used

● Each Haystack store manages multiple volumes

● Each haystack store has one in-memory index file

● Append-Only database

PHOTO DB

img38204982309482.png

img23443294923849.png

img23492384928342.png

img94538598345893.png

img34598345893485.png

img85843859349588.png

img49509593405090.png

...

FB

SHOW ME HARRY’S PROFILE PICTURE!

?????

With millions (billions?) of photos, how does Facebook retrieve photos quickly?

PHOTO DB

img38204982309482.png

img23443294923849.png

img23492384928342.png

img94538598345893.png

img34598345893485.png

img85843859349588.png

img49509593405090.png

...

FB

SHOW ME HARRY’S PROFILE PICTURE!

Looking for photo 49509593405090...

INDEX

Facebook’s Haystack

● Haystack Store: contains

“needles,” where each is a

photo and its requisite

searching data.

● Each photo has a key and

an alternate key.

● Photos are stored in no

particular order

○ Roughly, in order of

insertion

Facebook’s Haystack

● Needle:

○ Represents a photo stored in the Haystack

○ Uniquely identified by its <Offset, Key, Alternate Key, Cookie> tuple

○ Multiple needles can have the same key

○ Offset: the needle offset in the haystack store

○ Offset is stored in index (file and in-memory)

Facebook’s Haystack

● In-memory index

○ Data structure that maps pairs of (key, alternate key) to the

corresponding needle’s flags, size, and offset

○ Key is the photo id

○ Alternate key is the photo’s type. Each photo is scaled to four types/sizes

○ Linear index is inappropriate here...

PHOTO DB

NEEDLE 1

NEEDLE 2

NEEDLE 3

NEEDLE 4

NEEDLE 5

NEEDLE 6

NEEDLE 7

...

INDEX

Linear Index

...

...

...

...

<10145>

<10147>

...

...

PHOTO DB

NEEDLE 1

NEEDLE 2

NEEDLE 3

NEEDLE 4

NEEDLE 5

NEEDLE 6

NEEDLE 7

NEEDLE 8

INDEX

Linear Index

...

...

...

...

<10145>

<10147>

...

...

To add a new

needle with ID

10146, we have

to move

everything in the

index from here

on down by

one...

Facebook’s Haystack

● In-memory index

○ Data structure that maps pairs of (key, alternate key) to the

corresponding needle’s flags, size, and offset

○ Key is the photo id

○ Alternate key is the photo’s type. Each photo is scaled to four types/sizes

○ Google Sparsehash used (closed hashing + quadratic probing)

■ i.e. a hash map using <key, alternate key> as the hashing key

Hash Table Index

● A table that stores record locations—pointers (e.g.

needle offsets)—organized by hash key
○ Searching for a record with a given key:

■ Hash the key and probe until found in the table

■ Follow the pointer located in the table

■ Return the record

○ O(N/M) lookup time

PHOTO DB

NEEDLE 1

NEEDLE 2

NEEDLE 3

NEEDLE 4

NEEDLE 5

NEEDLE 6

NEEDLE 7

...

INDEX

Hash

Table

FB

“Find me

photo with id

4363” Hash

function

Hash Table Index

● Inserting a record into the database:

○ O(N/M) index update (inserting the pointer into the

table)

● Deleting a record from the database:

○ O(N/M) to find the pointer in the table and then

“remove” it

○ Removing an entry from a hash table is a fraught

process—need to make sure that anything that was

inserted after in a probe sequence is still accessible!

Facebook’s Haystack

● In-memory index

ℎ𝑎𝑠ℎ (𝑘𝑒𝑦, 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 𝑘𝑒𝑦)

Alternate key: large, medium, small, thumbnail

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑒𝑒𝑑𝑙𝑒 𝑖𝑛 𝑖𝑛𝑑𝑒𝑥

Delete status

Facebook’s Haystack: Photo Read

● Exact match query

● Each request contains the photo’s: logical volume id, key, alternate key,

and cookie

● Hash function is used to find the photo in the in-memory index

Facebook’s Haystack: Photo Read

● If photo is deleted (flag sets to delete) stop

● Else find the needle in the volume based on the offset, reads the entire

needle, performs integrity checks and returns the image

● One disk access for each request

Facebook’s Haystack: Photo Write

● Each request contains the logical volume id, key, alternate key, cookie,

and data (photo)

● A new needle is created and appended (added at the end) to the Haystack

● A mapping for the new needle is added to the in-memory index

Facebook’s Haystack: Photo Write

● Special case: Photo modification (e.g. after rotation)

● A Needle cannot be overwritten (append-only)

● A new needle is created with the same key and alternate key as the

original needle

● The in-memory index is updated: offset is updated to match the new

needle

Facebook’s Haystack: Photo Delete

● Flag is set to “delete” in both in-memory index and Haystack store

● Requests to get deleted photos first check the in-memory flag and return

errors if that flag is enabled

	Slide 1: Indexing
	Slide 2: Program Memory vs. Disk Space
	Slide 3: Introduction
	Slide 4: Index vs. Database
	Slide 5: Index
	Slide 6: How to Build an Index: Primary Key
	Slide 7: Primary Key Index
	Slide 8: Primary Key: Caveats
	Slide 9: How to Build an Index: Secondary Keys
	Slide 10: Secondary Key
	Slide 11: Database indexing
	Slide 12: Index File
	Slide 13: Linear indexing
	Slide 14: Linear indexing
	Slide 15: Linear indexing
	Slide 16: Second-level index
	Slide 17: Second-level index
	Slide 18: Second-level index
	Slide 19: Linear indexing: Drawback
	Slide 20: Interlude: HW6
	Slide 21: Goal of HW6
	Slide 22: JSoup, RSS, & HTML
	Slide 23: JSoup, RSS, & HTML
	Slide 24: JSoup, RSS, & HTML
	Slide 25: JSoup, RSS, & HTML
	Slide 26: Testing and the internet
	Slide 27: Writing your own testing files
	Slide 28: Writing your own testing files
	Slide 29: Using a terminal, navigate to the directory containing your sample files.
	Slide 30: Start a web server on port 8090
	Slide 31: Friday’s Recitation Activity
	Slide 32: TF-IDF: term frequency-inverse document frequency
	Slide 33: TF-IDF: term frequency-inverse document frequency
	Slide 34: TF-IDF: term frequency-inverse document frequency
	Slide 35: TF-IDF: term frequency-inverse document frequency
	Slide 36: TF-IDF: term frequency-inverse document frequency
	Slide 37: TF-IDF: term frequency-inverse document frequency
	Slide 38: This Assignment’s Indices:
	Slide 39: This Assignment’s Indices:
	Slide 40: Linear Index
	Slide 41: Linear Index
	Slide 42: Linear Index
	Slide 43: Indexing Example: Facebook’s Haystack
	Slide 44
	Slide 45
	Slide 46: Facebook’s Haystack
	Slide 47: Facebook’s Haystack
	Slide 48: Facebook’s Haystack
	Slide 49
	Slide 50
	Slide 51: Facebook’s Haystack
	Slide 52: Hash Table Index
	Slide 53
	Slide 54: Hash Table Index
	Slide 55: Facebook’s Haystack
	Slide 56: Facebook’s Haystack: Photo Read
	Slide 57: Facebook’s Haystack: Photo Read
	Slide 58: Facebook’s Haystack: Photo Write
	Slide 59: Facebook’s Haystack: Photo Write
	Slide 60: Facebook’s Haystack: Photo Delete

