Indexing
CIT5940

Program Memory vs. Disk Space

You’re the CTO of a new tech company Feebo. Congrats on your 3M new
users and all of the hundreds of photos each of them like to share!

e Software runs on machines with RAM—program memory—thatis fast
but comes in short supply.

e Datais stored in centers with thousands of hard drives—“disks”—that
are cheap but take a while to read from & write to.

The success of Feebo relies on your ability to write software that accesses
huge amount of information on disk, but quickly! Every millisecond spent
waiting for an app view to load is another few users dropped...

Introduction

e You’'ll often work with a dataset that doesn’t entirely fit into your
program’s memory

e Indexing: the process of associating a search key with the location (on
disk) of a corresponding data record

o Think of theindex in a textbook: given a topic name, it tells you where to
go find more information about that topic.

e Remember: program memory is fast but expensive, whereas disk space
is slow and cheap.

o Do as little seeking on disk as possible with carefully planned indices.

Index vs. Database

Anindex is used to enable fast queries over a database. A database is just some
collection of data records (like a data structure), which could take the form of:

e An array, a tree, or a hash system of records

e ARDB (a“classical” database) or a NOSQL DB (a “graph based” database)

CREATE TABLE IF NOT EXISTS Employees (
FirstName VARCHAR(50),
LastName VARCHAR(50), <Harry, Smith, sharry,
Username VARCHAR(50), 34893394, Lecturer>

ID INT,
Role VARCHAR(50) <Eric, Fouh, efouh,

) 48983292, P.o.P>

INSERT INTO Employees (FirstName, LastName, Username, ID, Role)
VALUES
('"Harry', 'Smith', 'sharry', , 'Lecturer'),
('Exric', 'Fouh', 'efouh', , 'P.o.P"),
('Vivian', 'Xi', 'wvivianxi', , 'TA'), <Kevin, Dannenberg, kdann,
('Kevin', 'Dannenberg', 'kdann', , 'TA"); 39483428, TA>

<Vivian, Xi, vivianxi,
84293938, TA>

Creating a relational database in SQL _ _
An array-like view of the records stored.

® Theindex does not store the record
I nd ex ® The index stores a reference to the record

® A collection of records can be supported by multiple indices

<Harry, Smith, sharry,
34893394, Lecturer>

<Eric, Fouh, efouh,
48983292, P.o.P>

<Vivian, Xi, vivianxi,
84293938, TA>

<Kevin, Dannenberg, kdann,
39483428, TA>

How do the two different indices here let you query the database?

How to Build an Index: Primary Key

e Each record of a database normally has a unique identifier
(field/attribute)

e Primary key: an attribute that uniquely identifies a record
o ID number, Penn ID, Social Security Number, etc.

o Often a number or a short string, which can be expressed using far fewer
bits compared to the full record.

e Firstidea: create a table of primary keys to search through

Primary Key Index

e Associates each primary key value with a pointer to the actual record on

disk
PK Index (id) Records 100K repords with a
50KB picture each...
1| & {id: 3, name: "Vanessa", major: "art"}
2| @ ><{id: 2, name: "Steven", major: "history"}
3 | @ {id: 1, name: "Sarah", major: "mcit"}
~1MB ~1GB

If I have n records and a PK index storing the keys in a sorted array, what runtime can |
expect when looking up a record by its primary key?

Primary Key: Caveats

e Primary key often not known by the user of the database

e Primary key often not useful when searching for a record.

e Database searches often performed using attributes other than the
primary key (name, age, major, salary, etc.)

How to Build an Index: Secondary Keys

e Secondary key: a key field in a record where a particular key value might
be duplicated in multiple records

o such as salary, name, major, etc.

e Secondary keyis more likely to be used by a user as a search key than is
the record's primary key

o Can’t be used to uniquely identify a record, though

Search
Search
A milk jawny
834839217491
" o
Q Q milk jawn
Q Q 834839217491

milkjawn
Milk Jawn - Followed by stick_and_pope + ...

Secondary Key

e Secondary key index: associates a secondary key value with the primary
key of each record having that secondary key value

Sy R Search using SK Index:
Key Key - Search for your secondary key to
Jones > | AA1O obtain a reference to the batch of

primary keys whose records have that

Smith ABi2 secondary key
Zukowski AB39 - For each potential primary key match,
FF37 look up the record associated with
that primary keys using a PK index
- If you have a match, you're done!

—> AX33

- If there’s no match, keep looking at
AX35 the next possible primary key.
ZX45

ZQ99

L
->

Database indexing

o Linearindexing

o Hash-based indexing

o Tree-based indexing

Index File

 Indexfile: a file whose records consist of
key-value pairs where the values are
referencing the complete records stored in
another file

Where have we used an index file before in this course?

Linear indexing

e Linearindex: index file organized as a sequence of key-value
pairs where the keys are in sorted order and the pointers
either

o Point to the position of the complete record on disk (pictured)

o Pointto the position of the primary key in the primary key index

e Linearindex amenable to binary search (efficient search)

Sorted linear index,
like an array of (PK, 37 ‘ 42 | 52 73 98
address) tuples Portion of main memory
v \ v v \ where variable-length
records live
73 92 98 37 |42

Linear indexing

e Linearindex:indexfile organized as Is this PK part linear?
a sequence of key-value pairs where
. Secondary Primary

the keys are in sorted order and the Key Key

pointers either Jones > | aat0

Smith AB12

o Point to the position of the Zukowski AB39

Saw this already; this is FF37

complete record on disk :
clearly a linear structure

> AX33

o Point to the position of the

AX35
primary key in the primary key ZX45
index (pictured)

> ZQ99

e Thesecondary key index s called
the inverted list

Linear indexing

e Linearindex:indexfile organized as
a sequence of key-value pairs where

the keys are in sorted order and the _ _ _ _
A better implementation: keep primary keys in

pointers either an array for better space efficiency.
Secondary Primary
Key Index Key Next
o Point to the position of the Jones 0 0| AAID |41
complete record on disk Smith ’ P A L
Zukowski 3 2 ZX45 <k
3| zage
o Point to the position of the 4| Bz |s i |
primary key in the primary key =8 [ERARI IR
index (pictured) | I
7 FF37 |

e Thesecondary key index s called
the inverted list

Second-level index

e LinearIndex asimplemented so faris good when:
o Keys are much smaller than records
o The datasetis not too large

o i.e. when the primary keys can all be kept in memory

e Whatif all primary keys can’t be keptin memory?

o Forlarge databases, linear index array/LL cannot fit in memory

o Leads to expensive search because of several disk accesses

Second-level index

e Solution:

o Second-level index stored in main memory (array)

B NOT NECESSARILY RELATED TO SECONDARY KEYS: confusing name ®

1. Here, the value in cell |

2. Each cell here 1 | 2003 | 5894 10528| givei the minimum value in
represents one OCK I

memory block

1 2001 (2003 5688 |5894 9942 (10528 10984

3. Zoomed in view of block 1 from above, which is sorted
for easy retrieval of elements in that range.

2003 | 2260 | 2592 | 2820 | 3000 | 3920 | 4160 | 4880 | 5550 | 5688
0 1 2 3 4 5 6 7 8 9

Second-level index

e Solution:
o Second-level index stored in main memory (array)
B NOT NECESSARILY RELATED TO SECONDARY KEYS
o Index file stored across several blocks (on disk)

o Second-level index stores the first key value in the corresponding disk block
of the index file

o Search requires 2 disk accesses: (1) load the block of the index file containing
the key, (2) retrieve the record

B Better than alinear search over all records, which might have to load many
blocks

Linear indexing: Drawback

e Insertion and deletion are expensive

o All secondary indices must be updated: the entire contents of the array might
be shifted

e Secondary key indexes contain duplicates: space expensive

Interlude: HW6

Goal of HW6

e Build anewsaggregator that allows a user to view articles based on the terms
contained inside of them

e Tasks:
o Reasoning about ethics and social impact

Using an RSS feel to crawl webpages (!!!)

Calculating TF-IDF for a corpus of documents

Creating an inverted index for each term-based search
Generating a term list and incorporating autocomplete

o O O O

JSoup, RSS, & HTML

e We’re connecting to the internet and parsing documents hosted remotely.
e https://www.seas.upenn.edu/~cit5940/sample rss feed.xml

<rss version="2.0">
<title>Hw6 Sample RSS Feed</title>
<description>Sample RSS feed for CIT594 news aggregator</description>
<link>http://localhost:8090/pagel.html</link>
<link>http://localhost:8090/page2.html</link>
<link>http://localhost:8090/page3.html</link>
<link>http://localhost:8090/paged.html</link>
<link>http://localhost:8090/page5.html</link>

</rss>

o RSS, pictured above, is a markup language that allows you to specify a series of data
sources (LINK: rss for podcasts.)

https://www.seas.upenn.edu/~cit5940/sample_rss_feed.xml
https://gist.github.com/rodydavis/d0cb7a53d8deb42e92ae803a9dd48dbc

JSoup, RSS, & HTML

e Butwait: how do you connect to the internet?
o Download JSoup and add it to your Eclipse/IntelliJ project (instructions included in
writeup)
o Then, to manipulate each link in an RSS feed:

Document doc = Jsoup.connect(doc_url).get();

Elements linkElements = doc.getElementsByTag("Llink");

(Element Link : U'nks) { Each of these is a link to another
String linkText = link.text(); Pag®

doSomething(linkText);

https://jsoup.org/

JSoup, RSS, & HTML

e Butwait: how do you connect to the internet?
o Download JSoup and add it to your project (instructions included in writeup)
o You can manipulate each link in an RSS feed.
o Foreach link, navigate to that page to find the list of terms contained in that page
o Use JSoup the same way to manipulate HTML as the RSS document.

< C (@ @ seas.upenn.edu/~cit594/pagel.html h ¥ B & @

& @ SVGCrowbar2 @ library proxy Snippets fixedpoints PFP Lesson Plans (8 CIS521 Coursera 594 110 [Penncal [E 110 Grades

data structures: linear data structures Lists: arraylist, linkedlist, stacks, queues

JSoup, RSS, & HTML

e Butwait: how do you connect to the internet?
o Download JSoup and add it to your project (instructions included in writeup)

o You can manipulate each link in an RSS feed.
o Foreach link, navigate to that page to find the list of terms contained in that page
O

Use JSoup the same way to manipulate HTML as the RSS document.

< C O @& seas.upenn.edu/~cit594/pagel.html h % B2 & &

& @ SVGCrowbar2 @ library proxy Snippets fixedpoints PFP Lesson Plans (& CIS521 Coursera 594 110 [PenncCal [E] 110 Grades

data structures: linear data structures Lists: arraylist, linkedlist, stacks, queues

. <data, structures, linear, data,
seas. upenn.edu/~cit5940/page . htm| structures, lists, arraylist, linkedlist,

(the document name)
stacks, queues>
(the list of terms)

Testing and the internet

e Youshould write your own test cases as always, but how to host your own RSS
feed for access?

https://www. python.org/downloads/

https://www.python.org/downloads/

Writing your own testing files

< samplefiles =2 238
Name ~ Date Modified

¢ pagel.html Mar 11, 2020 at 11:29 AM

¢ page2.html Mar 11, 2020 at 11:32 AM

¢ page3.html Apr 7, 2020 at 10:56 AM

¢ page4d.html Apr 7, 2020 at 10:57 AM

¢ pageb.html Apr 7, 2020 at 10:59 AM

Apr 3, 2020 at 2:01 PM
<rss version="2.0">
<title>Hw6 Sample RSS Feed</title>
<description>Sample RSS feed for CIT594 news aggregator</description>
<link>http://localhost:8090/pagel.html</link>
<link>http://localhost:8090/page2.html</link>
<link>http://localhost:8090/page3.html</link>
<link>http://localhost:8090/paged4.html</1link>
<link>http://localhost:8090/page5.html</1link>
</rss> Keep the base URL for your pages http://localhost:8090 and write

whatever you want in the other .html files in your directory!

http://localhost:8090/

Writing your own testing files

< samplefiles = goo
Name ~ Date Modified
¢ pagel.html Mar 11, 2020 at 11:29 AM
¢ page2.html Mar 11, 2020 at 11:32 AM
¢ page3.html Apr 7, 2020 at 10:56 AM
¢ paged.html Apr 7, 2020 at 10:57 AM
& pageb.ntml—— ——» Apr 7, 2020 at 10:59 AM
sample_rss_feed.xml Apr 3, 2020 at 2:01 PM

<!DOCTYPE html>
<html>
<head>
<title>hwé6 feed5</title>

</head>
<body>
Here's a silly little html file
</body>
</html>

Put whatever text you want in the bodies of your custom pages
for testing. This is page5.html

Using a terminal, navigate to the directory containing
your sample files.

® © @® [samplefiles Info

= samplefiles 2 KB
& Modified: March 26, 2022 at 5:49 PM }

—harrysmith@Harrys-MBP ~/Documents/22sp/cis110/22sp <ruby-2.7
General: er>

L$ cd /Users/harrysmith/Downloads/samplefilesf

Shared folder
Locked

More Info:
Name & Extension:
Comments:

Preview:

[:harrysmith@Harrys—MBP ~/Downloads/samplefiles <ruby-2.7.2>
$

ls
pagel.html page3.html pageb5.html
page2.html page4.html sample_rss_feed.xml

Sharing & Permissions:

Start a web server on port 8090

[:harrysmith@Harrys—MBP ~/Downloads/samplefiles <ruby-2.7.2>
$ python -m http.server 8090

< C 0O @ localhost:8090/sample_rss_feed.xml

n) @ SVG Crowbar 2 @ library proxy Shippets fixedpoints PFP Lesson Plan:

This XML file does not appear to have any style information associated with it. The docum

v<rss version="2.0">

<title>Hw6 Sample RSS Feed</title>

<description>Sample RSS feed for CIT594 news aggregator</description>
<link>http://localhost:8090/pagel.html</link>
<link>http://localhost:8090/page2.html</link>
<link>http://localhost:8090/page3.html</link>
<link>http://localhost:8090/paged.html</link>
<link>http://localhost:8090/page5.html</link>

</rss>

Friday’s Recitation Activity

e Hash a sequence of numbers using a few different hash
systems (e.g. linear probing, linear probing with steps,
quadratic probing, pseudo-random probing, double hashing)

e Identifying what a hash system is based on the probe
functions used

e Describing an algorithm for using a linear search to find
records in a range (not code)

TF-IDF: term frequency-inverse document frequency

e Term frequency: how often does a term appear in a particular document?
e Document frequency: how many documents does a particular term
appearin?

e -TF(t)=(Number of times term t appearsin adocument) / (Total
number of terms in the document)
- IDF(t) = log_e(Total number of documents / Number of documents
with term tin it)
- TF-IDF(t) = TF * IDF

Motto: A term has a high TF-IDF score in a given document if it appears a lot in
that document but not very often in every document.

TF-IDF: term frequency-inverse document frequency

e Document 1: "The solar system consists of the Sun and eight planets.
Mercury is the closest planet to the Sun, while Neptune is the furthest."

e Document 2: "Mercury is a chemical element with the symbol Hg. Mercury
is commonly known as quicksilver and was formerly named

hydrargyrum."

e Document 3: "The planet Venus has a thick atmosphere that traps heat,
making it the hottest planet in our solar system despite not being the
closest to the Sun."

e Document4: "The Sun provides solar energy that can be captured using
photovoltaic panels and converted into electricity."

TF-IDF: term frequency-inverse document frequency

e Document 1: "The solar system consists of the Sun and eight planets.
Mercury is the closest planet to the Sun, while Neptune is the furthest."

e Document 2: "Mercury is a chemical element with the symbol Hg. Mercury
is commonly known as quicksilver and was formerly named
hydrargyrum."

e Document 3: "The planet Venus has a thick atmosphere that traps heat,
making it the hottest planet in our solar system despite not being the
closest to the Sun."

e Document4: "The Sun provides solar energy that can be captured using
photovoltaic panels and converted into electricity."

TF of “the” in document 1: high or low?
IDF of “the: high or low?

TF-IDF: term frequency-inverse document frequency

e Document 1: "The solar system consists of the Sun and eight planets.
Mercury is the closest planet to the Sun, while Neptune is the furthest."

e Document 2: "Mercury is a chemical element with the symbol Hg. Mercury
is commonly known as quicksilver and was formerly named
hydrargyrum."

e Document 3: "The planet Venus has a thick atmosphere that traps heat,
making it the hottest planet in our solar system despite not being the
closest to the Sun."

e Document4: "The Sun provides solar energy that can be captured using
photovoltaic panels and converted into electricity."

TF of “the” in document 1: high
IDF of “the™: low

TF-IDF: term frequency-inverse document frequency

e Document 1: "The solar system consists of the Sun and eight planets.
Mercury is the closest planet to the Sun, while Neptune is the furthest."

e Document 2: "Mercury is a chemical element with the symbol Hg. Mercury
is commonly known as quicksilver and was formerly named
hydrargyrum."

e Document 3: "The planet Venus has a thick atmosphere that traps heat,
making it the hottest planet in our solar system despite not being the
closest to the Sun."

e Document4: "The Sun provides solar energy that can be captured using
photovoltaic panels and converted into electricity."

TF of “Mercury” in document 2: high or low?
IDF of “Mercury”: high or low?

TF-IDF: term frequency-inverse document frequency

e Document 1: "The solar system consists of the Sun and eight planets.
Mercury is the closest planet to the Sun, while Neptune is the furthest."

e Document2: "Mercury is a chemical element with the symbol Hg.
Mercury is commonly known as quicksilver and was formerly named
hydrargyrum."

e Document 3: "The planet Venus has a thick atmosphere that traps heat,
making it the hottest planet in our solar system despite not being the
closest to the Sun."

e Document4: "The Sun provides solar energy that can be captured using
photovoltaic panels and converted into electricity."

TF of “Mercury” in document 2: high
IDF of “Mercury”: high

This Assignment’s Indices:

e The full records are effectively <Term, Document, TF-IDF>
o Someterm

o Thedocumentin which it appeared
o The TF-IDF score for that term in that document (relative to this corpus)
e Thefirstindexyou build looks up full records with the Document as the key
o Useful for looking up the Terms that appear in a particular Document.
e Thesecondindexisinverted, mapping a Term to the Document it appears in
o Useful for looking up in which Document a term had the highest (or lowest) TF-IDF

This Assignment’s Indices:

e Areall maps!

e Quick trick for iteration over maps:
o Entryobjects are defined as Key, Value pairs for a particular map

Map<Integer, String> map = ...

(Map.Entry<Integer, String> entry : map.entrySet()) {

int kK = entry.getKey();
String v = entry.getValue()

Linear Index

o An ordered (possibly sorted) collection of entries.
o Usually traversed using linear search or binary search

o Linear search:
m Useful when the indexis not sorted
m Also useful for range queries
o Binary search:
B Only applicable when the index is sorted
m Also useful for range queries

Linear Index

e Inserting a record into the database:

- Unsorted index: O(1) update (just append the <key,
pointer> entry to the end of the index)

- Sorted index: O(n) update (have to insert the entry
somewhere in the middle of the index, moving ~50%
of the entries on average)

o Deleting a record from the database:

- Unsorted/Sorted indices: O(n) to find the entry and

then delete it from the array/list (shift the other stuff)

Linear Index

o Marking a record from the database as inaccessible:
- Unsorted index: O(n) to find the entry and then tag it

as “inaccessible”
- Sorted index: O(lg n) to find the entry and then tagit

as “inaccessible”

A common pattern: takes less time to “flag” an entry for
deletion than it does to actually remove it from your
system...

Indexing Example: Facebook’s Haystack

Photo Storage infrastructure
Disks are organized in volumes of fixed size
Haystack index store consists of 2 files:

o Haystack store (database)

o Indexfile (used to rebuild the in-memory index)
In-memory index used
Each Haystack store manages multiple volumes
Each haystack store has one in-memory index file
Append-Only database

SHOW ME HARRY’S PROFILE PICTURE!

Img38204982309482.png
iImg23443294923849.png
iImg23492384928342.png

Img94538598345893.png
Img34598345893485.png
Img85843859349588.png
img49509593405090.png

With millions (billions?) of photos, how does Facebook retrieve photos quickly?

SHOW ME HARRY’S PROFILE PICTURE!

Looking for photo 49509593405090...

img38204982309482.png
img23443294923849.png
iImg23492384928342.png
Img94538598345893.png
iImg34598345893485.png
Img85843859349588.png
img49509593405090.png

Facebook’s Haystack

Header Magic Number

Superblock

Cookie
Needle 1 Key
Alternate Key

e Haystack Store: contains . £
“needles,” where eachis a Data

Needle 3

photo and its requisite \/J |
Footer Magic Number
Sea rCh|ng data . . Data Checksum

Padding

e Each photo has a key and

an alternate key Figure 5: Layout of Haystack Store file
e Photos are stored in no Field Explanation
. Header Magic number used for recovery
Pa rticu la ro rd er Cookie Random number to mitigate
brute force lookups
. Key 64-bit photo id
o Rou gh ly ,inorder of Alternate key 32-bit supplemental id
. . Flags Signifies deleted status
Insertion Size Data size
Data The actual photo data
Footer Magic number for recovery
Data Checksum | Used to check integrity
Padding Total needle size is aligned to 8 bytes

Facebook’s Haystack

e Needle:
o Represents a photo stored in the Haystack
o Uniquely identified by its <Offset, Key, Alternate Key, Cookie> tuple
o Multiple needles can have the same key

o Offset: the needle offset in the haystack store

o Offsetis stored in index (file and in-memory)

Facebook’s Haystack

® In-memory index

o Data structure that maps pairs of (key, alternate key) to the
corresponding needle’s flags, size, and offset

o Keyisthephotoid

o Alternate key is the photo’s type. Each photo is scaled to four types/sizes

o Linearindex is inappropriate here...

<10145>

<10147>

q

—_—

—
\\

/

NEEDLE 1

NEEDLE 2

NEEDLE 3

NEEDLE 4

NEEDLE 5

NEEDLE 6

NEEDLE 7

NEEDLE 1

NEEDLE 2

NEEDLE 3
To add a new _—
needle with ID <10145> — NEEDLE 4
10146, we have 10147> NEEDLE 5
to move \\ NEEDLE 6
_everythlng in the s
index from here /
on down by ~— NEEDLE 8

one...

Facebook’s Haystack

® In-memory index

o Data structure that maps pairs of (key, alternate key) to the
corresponding needle’s flags, size, and offset

o Keyisthephotoid
o Alternate key is the photo’s type. Each photo is scaled to four types/sizes

o Google Sparsehash used (closed hashing + quadratic probing)

B i.e. ahash map using <key, alternate key> as the hashing key

Hash Table Index

o Atablethat stores record locations—pointers (e.g.

needle offsets)—organized by hash key

o Searchingfor a record with a given key:
m Hash the key and probe until found in the table

m Follow the pointer located in the table
B Returntherecord

o O(N/M) lookup time

“Find me
photo with id
4363”

- /

function

L

NEEDLE 1
NEEDLE 2
NEEDLE 3
NEEDLE 4
NEEDLE 5
NEEDLE 6
NEEDLE 7

Hash Table Index

e Inserting a record into the database:
o O(N/M) index update (inserting the pointer into the
table)
o Deleting a record from the database:

- O(N/M) to find the pointer in the table and then
“remove” it

- Removing an entry from a hash table is a fraught
process—need to make sure that anything that was
inserted after in a probe sequence is still accessible!

Facebook’s Haystack

® In-memory index

hash (key, alternate key) : location of needle in index

Alternate key: large, medium, small, thumbnail

Delete status

Key 64-bit object key

Needle 1 index record

Alternate Key 32-bit object alternate key

Flags Currently unused

Needle 2 index record
Offset Needle offset in the haystack store

" Size Needle data size
Needle 3 index record

Facebook’s Haystack: Photo Read

e Exact match query

e Each request contains the photo’s: logical volume id, key, alternate key,
and cookie

e Hash function is used to find the photo in the in-memory index

Facebook’s Haystack: Photo Read

e If photois deleted (flag sets to delete) stop

e Else find the needle in the volume based on the offset, reads the entire
needle, performs integrity checks and returns the image

e One disk access for each request

Facebook’s Haystack: Photo Write

e Eachrequest contains the logical volume id, key, alternate key, cookie,

and data (photo)
e Anew needleis created and appended (added at the end) to the Haystack

e A mapping forthe new needle is added to the in-memory index

Facebook’s Haystack: Photo Write

e Special case: Photo modification (e.g. after rotation)

e A Needle cannot be overwritten (append-only)

e Anew needleis created with the same key and alternate key as the
original needle

e Thein-memory index is updated: offset is updated to match the new
needle

Facebook’s Haystack: Photo Delete

e Flagissetto “delete” in both in-memory index and Haystack store

e Requests to get deleted photos first check the in-memory flag and return
errorsif that flag is enabled

	Slide 1: Indexing
	Slide 2: Program Memory vs. Disk Space
	Slide 3: Introduction
	Slide 4: Index vs. Database
	Slide 5: Index
	Slide 6: How to Build an Index: Primary Key
	Slide 7: Primary Key Index
	Slide 8: Primary Key: Caveats
	Slide 9: How to Build an Index: Secondary Keys
	Slide 10: Secondary Key
	Slide 11: Database indexing
	Slide 12: Index File
	Slide 13: Linear indexing
	Slide 14: Linear indexing
	Slide 15: Linear indexing
	Slide 16: Second-level index
	Slide 17: Second-level index
	Slide 18: Second-level index
	Slide 19: Linear indexing: Drawback
	Slide 20: Interlude: HW6
	Slide 21: Goal of HW6
	Slide 22: JSoup, RSS, & HTML
	Slide 23: JSoup, RSS, & HTML
	Slide 24: JSoup, RSS, & HTML
	Slide 25: JSoup, RSS, & HTML
	Slide 26: Testing and the internet
	Slide 27: Writing your own testing files
	Slide 28: Writing your own testing files
	Slide 29: Using a terminal, navigate to the directory containing your sample files.
	Slide 30: Start a web server on port 8090
	Slide 31: Friday’s Recitation Activity
	Slide 32: TF-IDF: term frequency-inverse document frequency
	Slide 33: TF-IDF: term frequency-inverse document frequency
	Slide 34: TF-IDF: term frequency-inverse document frequency
	Slide 35: TF-IDF: term frequency-inverse document frequency
	Slide 36: TF-IDF: term frequency-inverse document frequency
	Slide 37: TF-IDF: term frequency-inverse document frequency
	Slide 38: This Assignment’s Indices:
	Slide 39: This Assignment’s Indices:
	Slide 40: Linear Index
	Slide 41: Linear Index
	Slide 42: Linear Index
	Slide 43: Indexing Example: Facebook’s Haystack
	Slide 44
	Slide 45
	Slide 46: Facebook’s Haystack
	Slide 47: Facebook’s Haystack
	Slide 48: Facebook’s Haystack
	Slide 49
	Slide 50
	Slide 51: Facebook’s Haystack
	Slide 52: Hash Table Index
	Slide 53
	Slide 54: Hash Table Index
	Slide 55: Facebook’s Haystack
	Slide 56: Facebook’s Haystack: Photo Read
	Slide 57: Facebook’s Haystack: Photo Read
	Slide 58: Facebook’s Haystack: Photo Write
	Slide 59: Facebook’s Haystack: Photo Write
	Slide 60: Facebook’s Haystack: Photo Delete

