
Course

Introduction

1

Welcome to CIT 5940!

A course about data structures and software design.

INTRODUCTION

2

Programs as Information Processors

Computers are good at reading, writing, and processing batches of information.

Individual units of data in a system are called records (or perhaps nodes

or items).

Further information is encoded by the structural relationships among the records

in a system.

INTRODUCTION

3

Data Structures

Data Structures are systems of structural relationships used to store records. The

relationships used for one data structure make certain operations:

easier or harder to program

more or less computationally efficient

INTRODUCTION

4

Data Structures & Affordances

The choices of relationships provide different affordances, or ways in which users are

able use the systems.

One data structure might make it easier to design an algorithm that finds the

oldest or youngest people in a group compared to another

The same algorithm might work more efficiently when calling the same operation

on one data structure vs. another

INTRODUCTION

5

One Common Data

Structure

What are the records?

What information is encoded by

the structural relationships?

What affordances does this

structure provide you?

INTRODUCTION

6

Another Common

Data Structure

What are the records?

What information is encoded by

the structural relationships?

What affordances does this

structure provide you?

INTRODUCTION

7

What You Will Learn in CIT 5940

Find the syllabus here.

You will learn:

Commonly used data structures and algorithms and their guarantees

and tradeoffs

How to measure the effectiveness of a data structure or algorithm

INTRODUCTION

8

https://www.cis.upenn.edu/~cit5940/current/calendar/

Case Study: Searching in an Array

How do you determine where a value is stored inside of an array?

INTRODUCTION

9

Case Study: Searching in an Array

An array is a simple data structure that stores an ordered—but not necessarily sorted—

sequence of values.

[54, 74, 31, 53, 38, 9, 34, 90, 60, 42, 24, 7, 3, 99, 7, 55]

A reasonable procedure to search over this array:

public static boolean contains(int[] array, int target) {
 for (int i = 0; i < array.length; i++) {
 if (array[i] == target) {
 return true;
 }
 }
 return false;
}

Note
A long, random array of integers

Example: Searching in an Array

Our approach requires us to do:

one iteration of the for loop to confirm that 54 is present,

three iterations to confirm that 31 is present, and

eighteen iterations to confirm that 55 is present or that -15 is not present.

[54, 74, 31, 53, 38, 9, 34, 90, 60, 42, 24, 7, 3, 99, 7, 55]

INTRODUCTION

11

Note
A long, random array of integers

Example: Searching in an Array

What if we knew that our array was sorted?

Challenges: we have to sort the array, and then we have to be careful about how we

add new elements to a sorted array

Advantages: we can use a binary search to find elements in the array much

more quickly!

INTRODUCTION

12

Example: Searching in a Sorted Array

public static boolean contains(int[] arr, int target) {
 int low = 0;
 int high = arr.length - 1;
 while (low <= high) {
 int mid = (low + high) / 2;
 if (arr[mid] == target) {
 return true;
 } else if (arr[mid] < target) {
 low = mid + 1;
 } else {
 high = mid - 1;
 }
 }
 return false;
}

https://www.cis.upenn.edu/~cis110/current/java/lectures/viz/binarySearch.html

Example: Searching in an Array

The operations that an array supports are:

accessing an element at a position

changing an element at a position

querying its length

Imposing additional invariants on an array allows us to make other assumptions

about what information our operations can give us.

Finding an element in a Sorted Array can be much faster than finding an element in

an Array since we can use a binary search to rule out half of the positions in the

Sorted Array at each step.

INTRODUCTION

14

Goals

We want you to be able to:

design algorithms that are easy to understand, code, & debug by using

data structures

design software that makes efficient use of the computer's resources

INTRODUCTION

15

Administrative Stuff

INTRODUCTION

16

Pre-requisites and Co-requisites

Programming: CIT 5900/5910 or CIS 1200

Comfort with writing & testing medium size programs in an object-

oriented language

Java experience is very helpful

Math: CIT 5920 or CIS 1600

Algorithms: CIT 5960 (co-requisite)

INTRODUCTION

17

Homeworks

HW1: Catch a Plagiarist

HW2: Algorithm analysis (written)

HW3: File compression

HW4: Autocomplete

HW5: Search Engine

HW6: Graphs

Also: a group project!

INTRODUCTION

18

Assignment Expectations

Assignments are largely autograded

Instant feedback on submission!

Transparent grading criteria!

Defines a narrow specification that must be conformed to!

You will likely need help during office hours

We have several OH per week, but there are more of you than there are of us.

You are expected to be writing your own test cases!

(it's part of your grade)

it helps streamline office hours questions & keep queues short.

INTRODUCTION

19

Assignment Expectations

1. Understand the Problem

i. What are the relevant concepts and how do they relate?

2. Formalize the Interface

i. How should the program interact with its environment?

3. Write Test Cases

i. How does the program behave on typical inputs?

ii. How does the program behave on unusual inputs, or invalid ones?

4. Implement the Required Behavior

i. Decompose the problem into simpler ones & apply this process to each.

INTRODUCTION

20

Questions &

Website Tour

21

https://www.cis.upenn.edu/~cit5940/current/

	Course Introduction
	Welcome to CIT 5940!
	Programs as Information Processors
	Data Structures
	Data Structures & Affordances
	One Common Data Structure
	Another Common Data Structure
	What You Will Learn in CIT 5940
	Case Study: Searching in an Array
	Case Study: Searching in an Array
	Example: Searching in an Array
	Example: Searching in an Array
	Example: Searching in a Sorted Array
	Example: Searching in an Array
	Goals
	Administrative Stuff
	Pre-requisites and Co-requisites
	Homeworks
	Assignment Expectations
	Assignment Expectations

	Questions & Website Tour

