
Lists

Agenda

1. Abstract Data Types & Interfaces

2. The Leaderboard Problem

3. The List ADT

4. Implementing Leaderboard using List.java

LISTS

1

ADTs &

Interfaces

2

[W]e consider not only the data structure but also the class of operations to be

done on the data; the design of computer representations depends on the desired

function of the data as well as on its intrinsic properties. Indeed, an emphasis on

function as well as form is basic to design problems in general.

— Don Knuth, The Art of Computer Programming, Volume 1

LISTS

3

Function vs. Form

The function of an type in Java is what you expect it to do. This is the set of methods

that it can execute.

The form of a type in Java, or the set of "intrinsic properties", refers to the instance

variables and method bodies for an implementation of that data type.

LISTS

4

Communicating in Terms of Function

When describing [software] systems, we need to be able to work at different levels

of abstractions.

An abstraction is an intentionally incomplete representation of some entity that

includes only the information that is relevant in a particular context with all other

properties omitted.

 Often the correct level of abstraction is to communicate in terms of function only.

LISTS

5

Interfaces

Interfaces allow us to specify data types entirely based on their function—the list of

abstract methods any implementing class must implement—without paying attention to

the type's intrinsic properties.

The data type defined by an interface is an abstract data type.

LISTS

6

Function & Form in Java: Path
Example

The Path interface in Java specifies an abstract data type for file paths.

A file path can be expressed as a String , but it abstractly represents a path

through a filetree encoding ancestor/descendent relationships.

The details of how a file path is specified differs among operating systems.

: Describe a Path based on what it does using an interface, and create different

implementing classes to sort out how they will work on different operating systems.

LISTS

8

The Path Interface

Tells you what you can do with something

that is a Path . Tells you absolutely nothing

about how the Path is implemented. And

that's good!

LISTS

public interface Path {
 Path getParent();
 int getNameCount();
 Path getName(int index);
 boolean endsWith(Path other);
 boolean endsWith(String other);
 boolean startsWith(Path other);
 boolean startsWith(String other);
 ...
}

9

Given a directory, determine whether or not that directory is contained inside of the

"Documents" directory.

public static boolean isInDocuments(Path current) {}

public interface Path {
 Path getParent(); // returns parent path or null if none exists
 int getNameCount();
 Path getName(int i); // returns the name of the stop on the path at index i
 boolean endsWith(Path other);
 boolean endsWith(String other);
 boolean startsWith(Path other);
 boolean startsWith(String other);
 ...
}

Given a directory, determine whether or not that directory is contained inside of the

"Documents" directory.

You did not need to see inside a class implementing Path in order to do this!

LISTS

public static boolean isInDocuments(Path current) {
 Path parent = current.getParent();
 if (parent == null) {
 return false;
 }
 return parent.endsWith("Documents") || isInDocuments(parent);
}

11

Implementing Interfaces

To actually construct an object that has the type of Path , we need to define one or

more classes that implement the Path interface.

LISTS

public class WindowsPath implements Path {
 char separator = '\';
 public WindowsPath(String descriptor) { ... }
}

public class UnixPath implements Path {
 char separator = '/';
 public UnixPath(String descriptor) { ... }
}

12

Then, in the Application:

LISTS

public static void main(String[] args) {
 String targetPathSpec = args[0];
 Path targetPath;
 if (System.getProperty("os.name").equals("Windows")) {
 targetPath = new WindowsPath(targetPathSpec);
 } else {
 targetPath = new UnixPath(targetPathSpec);
 }
 boolean isPersonal = isInDocuments(targetPath);
 ...
}

13

Polls!

LISTS

14

The Leaderboard

Problem

15

A Leaderboard

You're working on a Pennsylvania State Government that tracks quarterly CO2 emissions

from many business receiving conditional subsidies. In a given quarter, a firm's rank on

this emissions leaderboard determines the amount of a subsidy they receive.

Your job on the software team is to implement a class that can store an ordered

sequence of business names where their position in the sequence encodes their

relative ranks.

LISTS

16

Polls!

What is it important that we be able to do with a Leaderboard object?

LISTS

17

Understanding the Problem:

Leaderboard Capabilities

Gain access to the kth record of the Leaderboard to examine and/or to change

the contents of its fields.

Insert a new record just before or after the kth node.

Delete the kth record.

Determine the number of records in a Leaderboard .

c.f. Knuth, AOCP Vol. 1

LISTS

18

Understanding the Problem:

Other Issues

Should the Leaderboard allow duplicates?

Should the most polluting companies be at the "top" or the "bottom" of the

Leaderboard?

...

These are important questions, but we won't really focus on them for this lecture.

LISTS

19

Formalize the Interface

1. What information properties (instance variables) should a Leaderboard class

store?

2. What methods should a Leaderboard support?

LISTS

20

Polls!

What information properties (instance variables) should a Leaderboard class store?

LISTS

21

Polls!

What methods should a Leaderboard support? (Write a signature.)

LISTS

22

For Reference

This is one reasonable interface, but we'll go with whatever folks volunteer in lecture.

LISTS

public interface ILeaderboard {
 public String get(int i);
 public void set(int i, String name);
 public int size();
 public void insert(int i, String name);
 public void addToEnd(String name);
 public void addToStart(String name);
 public void remove(int i);
 public void remove(String name);
}

23

Writing Tests

A unit test always consists of some:

1. input/start configuration

2. expected behavior that some operation should exhibit

3. actual behavior that gets exhibited

4. some assertion that compares the actual behavior to the expected behavior

LISTS

24

Writing Tests: Example

Given the following representation of a Leaderboard ...

Leaderboard

Harry's Coal Burning Bonanza

Travis' Professional Oil Spillers

Arvind's Green Gallery

...and I insert "Jérémie's Vegan Jerky" at position 2...

LISTS

25

Writing Tests: Example

I would expect to see the following Leaderboard :

Leaderboard

Harry's Coal Burning Bonanza

Travis' Professional Oil Spillers

Jérémie's Vegan Jerky

Arvind's Green Gallery

LISTS

26

Writing Tests: Think/Pair/Share

Pick at least one of the methods that we chose as part of the interface. Come up with a

unit test or two for each method.

Doesn't have to be JUnit, but should have all components of a unit test.

LISTS

27

List ADT

28

A (Linear) List

A linear list is a sequence of records whose essential structural

properties involve only the relative positions between items as they appear in a line.

if is the first record and is the last

if , the th record is preceded by and followed by .

c.f. Knuth, AOCP Vol. 1

LISTS

29

A List is an ordered sequence of records. Given these relationships among the records,

one could expect to be able to perform the following operations:

Gain access to the kth record of the list to examine/change the contents of its fields.

Insert a new record just before or after the kth record.

Delete the kth record.

Combine two or more linear lists into a single list.

Split a linear list into two or more lists.

Make a copy of a linear list.

Determine the number of records in a list.

Sort the records of the list

Search the list for the occurrence of a record

Java's List ADT

Cartoon version:

LISTS

public interface List<E> {
 public E get(int i);
 public E set(int i, E elem);
 public int size();
 public void add(int i, E e);
 public boolean add(E e);
 public E remove(int i);
 public boolean remove(Object o);
 // plus lots of other stuff...
}

31

Connecting the Dots

Looks like a lot of what we want a Leaderboard to be able to do is really just what a

List is supposed to do.

LISTS

32

Leaderboard

With List

33

(See code.)

LISTS

34

Leaderboard As

List

35

Backing Up...

We're playing this game where sometimes we pretend we know what an ArrayList or

LinkedList is and sometimes we don't.

In the previous section, we used an ArrayList to solve the problem. This shows us

that there isn't really a problem to solve assuming we have access to the modern Java

toolkit.

LISTS

36

Going Forward...

In this section, we will refrain from using an ArrayList in order to get an

appreciation for how they work. In this case, we'll think of a Leaderboard differently:

not as an ADT

as a specific instance (implementation) of the List ADT.

LISTS

37

A Leaderboard With A Fixed Size

If we assume that we know the maximum number of elements included in a

Leaderboard , then it would be reasonable to use an array to store the elements.

This is called sequential allocation.

LISTS

38

Now: Implement

Next: Analyze

LISTS

39

	Lists
	Agenda
	ADTs & Interfaces
	Function vs. Form
	Communicating in Terms of Function
	Interfaces
	Function & Form in Java: Path Example
	The Path Interface
	Implementing Interfaces
	Then, in the Application:
	Polls!
	The Leaderboard Problem
	A Leaderboard
	Polls!
	Understanding the Problem: Leaderboard Capabilities
	Understanding the Problem: Other Issues
	Formalize the Interface
	Polls!
	Polls!
	For Reference
	Writing Tests
	Writing Tests: Example
	Writing Tests: Example
	Writing Tests: Think/Pair/Share
	List ADT
	A (Linear) List
	Java's List ADT
	Connecting the Dots
	Leaderboard With List
	Leaderboard As List
	Backing Up...
	Going Forward...
	A Leaderboard With A Fixed Size

