
CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Final Review
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Logistics

❖ Late Policy:

▪ You can still use the same late policy for HW4 and the final project

▪ I can grant extensions into reading days

▪ I REALLY don’t want to grant extensions into finals week

▪ Email me (Travis) at least a day in advance of the deadline so that
I have time to process the extension

❖ Final Exam: May 2nd @noon to May 6th @noon

▪ Cumulative & Midterm Clobber policy

❖ Travis’ OH TODAY from 5-7 pm

▪ May have some during next week, TBD

2

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Logistics

❖ HW4 Posted Due Thursday 4/20 @ 11:59

Extended to 5/5 @11:59 pm

I WILL GRANT FEW (if any) EXTENSIONS PAST THIS

❖ Project Released! Due Wednesday 4/26 @ 11:59

Extended to 5/5 @11:59 pm

I WILL GRANT FEW (if any) EXTENSIONS PAST THIS

❖ HW2 grades & Midterm grades posted

▪ Can fix HW2 submissions

▪ Midterm has regrades & the clobber policy

3

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Lecture Outline

❖ Final Exam Review

4

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Review Topics

❖ Scheduling

❖ Threads

❖ IPC

❖ Networks (P1, P2, P3)

❖ C++ Casting

❖ Smart Pointers

❖ Inheritance (P1 & P2)

❖ C++ Copying

5

NOTE: These are not all the
topics that could be on the final.
List is trimmed for review due to
time constraints.

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Scheduling

❖ The following processes are scheduled using a standard
Priority Round Robin scheme.

▪ You may assume the following:

• the quantum for all processes
(regardless of priority) is 2

• context switching is instantaneous

• if a process arrives and its priority is higher than that of the process
that is currently running, the newly-arrived process is immediately
scheduled; in that case, the process that is preempted goes to the end
of its queue, but is able to run for a full quantum the next time it is
scheduled

• if a process' time slice ends at the same time as another process of
the same priority arrives, the one that just arrived goes into the
queue before the one that just finished its time slice

6

In What order do the processes finish?

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Scheduling

❖ The following processes are scheduled using a standard
Priority Round Robin scheme.

▪ You may assume the following:

• the quantum for all processes
(regardless of priority) is 2

• context switching is instantaneous

• if a process arrives and its priority is higher than that of the process
that is currently running, the newly-arrived process is immediately
scheduled; in that case, the process that is preempted goes to the end
of its queue, but is able to run for a full quantum the next time it is
scheduled

• if a process' time slice ends at the same time as another process of
the same priority arrives, the one that just arrived goes into the
queue before the one that just finished its time slice

7

In What order do the processes finish?

EBACDF

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Threads

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Threads

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Threads

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Threads

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

IPC

❖ The following code intends to
use a global variable so that a
child process reads a string
and the parent prints it.

❖ Briefly describe two reasons
why this program won’t work.
You can assume it compiles.

12

string message;

void child();

void parent();

int main() {

pid_t pid = fork();

if (pid == 0) {

child();

} else {

parent();

}

}

void child() {

cin >> message;

}

void parent() {

cout << message;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

IPC

❖ The following code intends to
use a global variable so that a
child process reads a string
and the parent prints it.

❖ Briefly describe two reasons
why this program won’t work.
You can assume it compiles.
▪ After fork is called, global

variables are no longer shared.
Each process has its own
“message”

▪ There is no synchronization to
know if the parent prints after the
child reads. 13

string message;

void child();

void parent();

int main() {

pid_t pid = fork();

if (pid == 0) {

child();

} else {

parent();

}

}

void child() {

cin >> message;

}

void parent() {

cout << message;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

IPC

❖ Describe how we would have
to rewrite the code if we
wanted it to work. Keeping the
multiple processes and calls to
fork(). Be specific about where
you would add the new lines
of code.

14

string message;

void child();

void parent();

int main() {

pid_t pid = fork();

if (pid == 0) {

child();

} else {

parent();

}

}

void child() {

cin >> message;

}

void parent() {

cout << message;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

IPC

❖ Describe how we would
have to rewrite the code
if we wanted it to work.
Keeping the multiple
processes and calls to
fork(). Be specific about
where you would add the
new lines of code.

❖ ONE ANSWER:

15

string message;

int fds[2];

void child();

void parent();

int main() {

pipe(fds);

pid_t pid = fork();

if (pid == 0) {

close(fds[0]);

child();

} else {

close(fds[1]);

parent();

}

}

void child() {

cin >> message;

wrapped_write(fds[1], message);

}

void parent() {

wrapped_read(fds[0], message);

cout << message;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Networking: pt. 1

❖ TCP guarantees reliable delivery of the packets that make up a stream,

assuming that the socket doesn’t fail because of an I/O error.

❖ IP guarantees reliable delivery of packets, assuming that the socket doesn’t

fail because of an I/O error.

❖ Given a particular hostname (like www.amazon.com), getaddrinfo() will return

a single IP address corresponding to that name.

❖ A single server machine can handle connection requests sent to multiple IP

addresses.

❖ A struct sockaddr_in6 contains only an ipv6 address.

❖ The HTTP payload takes up a larger percentage of the overall packet sent

over the network than the IP payload.

16

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Networking: pt. 1

❖ TCP guarantees reliable delivery of the packets that make up a stream,

assuming that the socket doesn’t fail because of an I/O error.
▪ True

❖ IP guarantees reliable delivery of packets, assuming that the socket doesn’t

fail because of an I/O error.
▪ False

❖ Given a particular hostname (like www.amazon.com), getaddrinfo() will return

a single IP address corresponding to that name.
▪ False

❖ A single server machine can handle connection requests sent to multiple IP

addresses.
▪ True

❖ A struct sockaddr_in6 contains only an ipv6 address.
▪ False

❖ The HTTP payload takes up a larger percentage of the overall packet sent

over the network than the IP payload.
▪ False

17

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Networking pt. 2

❖ For each of the following behaviors, identify what
networking layer is most closely thought of as being
responsible for handling that behavior.

▪ Host A tries to send a long message to Host B in another city,
broken up into many packets. A packet in the middle does not
arrive, so Host A sends it again.

▪ Host A tries to send a message to Host B, but Host C and Host D
are also trying to communicate on the same network, so Host A
must avoid interfering

18

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Networking pt. 2

❖ For each of the following behaviors, identify what
networking layer is most closely thought of as being
responsible for handling that behavior.

▪ Host A tries to send a long message to Host B in another city,
broken up into many packets. A packet in the middle does not
arrive, so Host A sends it again.

• Transport Layer (Protocol commonly associated with this: TCP)

▪ Host A tries to send a message to Host B, but Host C and Host D
are also trying to communicate on the same network, so Host A
must avoid interfering

• Data Link Layer (Protocol commonly associated with this: MAC)

19

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Networking pt. 3

❖ The original versions of HTTP (including 1.1) were
designed to use plain text characters sent over the
network instead of alternatives like a binary encoding for
the request and response. Describe one advantage of this
design decision and one disadvantage.

❖ Advantage:

❖ Disadvantage:

20

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Networking pt. 3

❖ The original versions of HTTP (including 1.1) were
designed to use plain text characters sent over the
network instead of alternatives like a binary encoding for
the request and response. Describe one advantage of this
design decision and one disadvantage.

❖ Advantage:

▪ Interpretable by humans

▪ Easy to experiment with and adopt

❖ Disadvantage:

▪ Might be less efficient (for some definition of efficient) than a
well-packed binary format

21

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Casting

❖ For each of these casts in C++, will it be okay, cause a compile time error, or

cause a runtime error?

22

struct A {

int x;

};

struct B {

float y;

};

struct C : public B {

char z;

};

void modify(A* aptr);

int main() {

A a;

B b;

C c;

B* bptr = static_cast<B*>(&c);

// ^ OK, CT Err, RT Err

C* cptr = static_cast<C*>(&b); // OK, CT Err, RT Err

A* aptr = static_cast<A*>(&b); // OK, CT Err, RT Err

bptr = &c;

C* cptr_dyn = dynamic_cast<C*>(bptr); // OK, CT Err, RT Err

Could cause a RT error if we try to
access cptr->z

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Casting

❖ For each of these casts in C++, will it be okay, cause a compile time error, or

cause a runtime error?

23

struct A {

int x;

};

struct B {

float y;

};

struct C : public B {

char z;

};

void modify(A* aptr);

int main() {

A a;

B b;

C c;

// ...

cptr_dyn = dynamic_cast<C*>(&b); // OK, CT Err, RT Err

const A const_a;

modify(&const_a); // OK, CT Err, RT Err

modify(const_cast<A*>(&const_a)); // OK, CT Err, RT Err

Could cause a RT error if we try to
use cptr_dyn without checking for it being nullptr

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Casting

❖ For each of these casts in C++, will it be okay, cause a compile time error, or

cause a runtime error?

24

void modify(A* aptr);

int main() {

// ...
int64_t u64 = 0;

int32_t u32_r = reinterpret_cast<int32_t>(u64);

// ^ OK, CT Err, RT Err

int32_t u32_s = static_cast<int32_t>(u64);

// ^ OK, CT Err, RT Err

float f32 = static_cast<float>(u64);

// ^ OK, CT Err, RT Err

double f64 = reinterpret_cast<double>(u64);

// ^ OK, CT Err, RT Err

double* f64_ptr = reinterpret_cast<double*>(&u64);

// ^ OK, CT Err, RT Err

}

Double and uint64_t
are the same size, but
still not allowed

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Smart Pointers

❖ Suppose we have the following declarations at the beginning of a C++

program:

❖ For each part, indicate whether if we were to add just that line(s) after the

code above, whether there is a compiler error, some sort of run time error, or

memory leak.

▪ unique_ptr a(n);

▪ unique_ptr b(x);

▪ unique_ptr c(y);

▪ unique_ptr d(&n);

▪ unique_ptr e(new int(333));

▪ unique_ptr temp(new int(0));

unique_ptr f(temp.get());

25

int n = 17;

int *x = &n;

int *y = new int(42);

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Smart Pointers

❖ Suppose we have the following declarations at the beginning of a C++

program:

❖ For each part, indicate whether if we were to add just that line(s) after the

code above, whether there is a compiler error, some sort of run time error, or

memory leak.

▪ unique_ptr a(n); Won’t compile.

▪ unique_ptr b(x); Compiles, but fails during execution

▪ unique_ptr c(y); Works

▪ unique_ptr d(&n); Compiles, but fails during execution

▪ unique_ptr e(new int(333)); Works, but y leaks

▪ unique_ptr temp(new int(0)); Compiles,

unique_ptr f(temp.get()); but fails during execution

26

int n = 17;

int *x = &n;

int *y = new int(42);

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Inheritance

❖ Consider the following C++ classes and declared variables.

❖ What do each of function calls print? (if it compiles)

27

class Animal {

public:

virtual void Eat() { cout << “A::E” << endl; }

};

class Dog : public Animal {

public:

void Eat() { cout << “D::E” << endl; Bark(); }

void Bark() { cout << “D::B” << endl; }

};

class Husky : public Dog {

public:

virtual void Bark() { cout << “H::B” << endl; }

};

Dog d;

Husky h;

Dog *d2d = &d;

Animal *a2h = &h;

Dog *d2h = &h;

d2d->Eat();

a2h->Eat();

a2h->Bark();

d2h->Eat();

d2h->Bark();

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Inheritance

❖ Consider the following C++ classes and declared variables.

❖ What do each of function calls print? (if it compiles)

28

class Animal {

public:

virtual void Eat() { cout << “A::E” << endl; }

};

class Dog : public Animal {

public:

void Eat() { cout << “D::E” << endl; Bark(); }

void Bark() { cout << “D::B” << endl; }

};

class Husky : public Dog {

public:

virtual void Bark() { cout << “H::B” << endl; }

};

Dog d;

Husky h;

Dog *d2d = &d;

Animal *a2h = &h;

Dog *d2h = &h;

d2d->Eat();

// D::E

// D::B

a2h->Eat();

// D::E

// D::B

a2h->Bark();

// compiler

// error

d2h->Eat();

// D::E

// D::B

d2h->Bark();

// D::B

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Inheritance

❖ Complete the diagram below to show the layout of the virtual function tables

for the classes given on the previous page. Be sure that the order of pointers

in the virtual function tables is clear!

29

class One {

public:

void f1() { f3(); cout << "One::f1" << endl; }

virtual void f2() { cout << "One::f2" << endl; }

void f3() { cout << "One::f3" << endl; }

};

class Two: public One {

public:

void f4() { cout << "Two::f4" << endl; }

void f2() { f1(); cout << "Two::f2" << endl; }

virtual void f3() { f4(); cout << "Two::f3" << endl; }

};

class Three: public Two {

public:

void f3() { f2(); cout << "Three::f3" << endl; }

void f1() { cout << "Three::f1" << endl; }

};

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Inheritance

❖ Complete the diagram below to show the layout of the virtual function tables

for the classes given on the previous page. Be sure that the order of pointers

in the virtual function tables is clear!

30

class One {

public:

void f1() { f3(); cout << "One::f1" << endl; }

virtual void f2() { cout << "One::f2" << endl; }

void f3() { cout << "One::f3" << endl; }

};

class Two: public One {

public:

void f4() { cout << "Two::f4" << endl; }

void f2() { f1(); cout << "Two::f2" << endl; }

virtual void f3() { f4(); cout << "Two::f3" << endl; }

};

class Three: public Two {

public:

void f3() { f2(); cout << "Three::f3" << endl; }

void f1() { cout << "Three::f1" << endl; }

};

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Inheritance

❖ Now, for each of the following sequences of code, assume that we try to run

the program with the given lines of code replacing the empty box in main.

Either write the output that is produced when that program is executed, or, if

an error occurs, give a concise description of the problem.

31

One *x = new Two();
x->f1();
One::f3
One::f1

One *x = new Two();
x->f3();
One::f3

Two *x = new Two();
x->f3();
Two::f4
Two::f3

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Inheritance

❖ Now, for each of the following sequences of code, assume that we try to run

the program with the given lines of code replacing the empty box in main.

Either write the output that is produced when that program is executed, or, if

an error occurs, give a concise description of the problem.

32

One *x = new Three();
x->f4();
compiler error

Three *x = new Three();
x->f3();
One::f3
One::f1
Two::f2
Three::f3

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Inheritance

❖ Show the output produced after changing all of the member functions in the

classes to be virtual and then replacing the empty box in main with each of

the following sequences of code. Either write the output that is produced

when the program is executed, or, if an error occurs, give a concise

description of the problem.

33

One *x = new Two();
x->f1();
Two::f4
Two::f3
One::f1

One *x = new Two();
x->f3();
Two::f4
Two::f3

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

Inheritance

❖ Show the output produced after changing all of the member functions in the

classes to be virtual and then replacing the empty box in main with each of

the following sequences of code. Either write the output that is produced

when the program is executed, or, if an error occurs, give a concise

description of the problem.

34

Two *x = new Two();
x->f3();
Two::f4
Two::f3

One *x = new Three();
x->f4();
compiler error

Three *x = new Three();
x->f3();
Three::f1
Two::f2
Three::f3

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

35

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A'};

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

36

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

37

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

38

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

39

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

40

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

cout << Score(myAns) << endl;

return 0;

}

CIT 5950, Spring 2023L27: Final ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the

following invoked:

▪ MC constructor 6

▪ MC copy constructor 2

▪ MC operator= 2

▪ MC destructor 8

41

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const;

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS]; // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

cout << Score(myAns) << endl;

return 0;

}

	Default Section
	Slide 1: Final Review Computer Systems Programming, Spring 2023
	Slide 2: Logistics
	Slide 3: Logistics
	Slide 4: Lecture Outline
	Slide 5: Review Topics
	Slide 6: Scheduling
	Slide 7: Scheduling
	Slide 8: Threads
	Slide 9: Threads
	Slide 10: Threads
	Slide 11: Threads
	Slide 12: IPC
	Slide 13: IPC
	Slide 14: IPC
	Slide 15: IPC
	Slide 16: Networking: pt. 1
	Slide 17: Networking: pt. 1
	Slide 18: Networking pt. 2
	Slide 19: Networking pt. 2
	Slide 20: Networking pt. 3
	Slide 21: Networking pt. 3
	Slide 22: C++ Casting
	Slide 23: C++ Casting
	Slide 24: C++ Casting
	Slide 25: Smart Pointers
	Slide 26: Smart Pointers
	Slide 27: Inheritance
	Slide 28: Inheritance
	Slide 29: Inheritance
	Slide 30: Inheritance
	Slide 31: Inheritance
	Slide 32: Inheritance
	Slide 33: Inheritance
	Slide 34: Inheritance
	Slide 35: C++ Copying
	Slide 36: C++ Copying
	Slide 37: C++ Copying
	Slide 38: C++ Copying
	Slide 39: C++ Copying
	Slide 40: C++ Copying
	Slide 41: C++ Copying

