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❖ Which topic do you want to cover for the review?
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Upcoming Due Dates

❖ HW2 (Threads) Due TONIGHT @ 11:59 pm

▪ Released

❖ Midterm

▪ Take-home style on Wednesday 3/1 @ Noon till
Friday 3/3 @ noon

▪ Logistics released on Course Website

3



CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Collaboration Policy

❖ You are to write up and work on the midterm on your 
own. We want the work you submit to be a 
representation of your own thoughts.

❖ However, we acknowledge that your peers are often one 
of the best resources for understanding concepts; 
therefore, we are allowing the "Gilligan's Island Rule."
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Gilligan’s Island Rule

❖ The Gilligan's Island Rule: You are free to meet with 
fellow students and discuss assignments with them. 
Writing on a board or shared piece of paper during the 
meeting is acceptable; however, you should not take any 
written (electronic or otherwise) record away from the 
meeting. Everything that you derive from the 
collaboration should be in your head.

❖ After the meeting, engage in at least a half-hour of mind-
numbing activity (like watching an episode of Gilligan's 
Island), before starting to work on the assignment. 
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Review Topics

❖ C strings & output params

❖ C++ Class

❖ Concurrency

❖ Scheduling

❖ VM

❖ Caching (LRU)

6
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C Strings & Output Params

❖ Complete the following function (on Codio)
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// given a string, allocates and creates a new duplicate 

// of it and returns it through the output parameter "out".

// Returns false on error, returns true otherwise

void str_duplicate(char* str, char** out) {

}
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C Strings & Output Params

❖ Complete the following function

8

// given a string, allocates and creates a new duplicate 

// of it and returns it through the output parameter "out".

// Returns false on error, returns true otherwise

void str_duplicate(char* str, char** out) {

char* res = malloc((strlen(str) + 1) * sizeof(char));

*out = res;

while(*str) {

*res = *str

str++;

res++;

}

*res = *str;  // null terminator

return true; 

}

NOTE: There are 

other possible 

solutions
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C Strings & Output Params

❖ Complete the main function

9

// given a string, duplicates it and returns it through

// the output parameter "out". Returns false on error

// returns true otherwise

void str_duplicate(char* str, char** out);

// duplicates a string literal, 

// prints the duplicate, and runs without errors

int main(int argc, char** argv) {

char* sample = "Hello World!";

}
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C Strings & Output Params

❖ Complete the main function

10

// given a string, duplicates it and returns it through

// the output parameter "out". Returns false on error

// returns true otherwise

void str_duplicate(char* str, char** out);

// duplicates a string literal, 

// prints the duplicate, and runs without errors

int main(int argc, char** argv) {

char* sample = "Hello World!";

char* dup;

str_duplicate(sample, &dup);

printf("%s", dup);

free(dup);

return EXIT_SUCCESS;

}

NOTE: There are 

other possible 

solutions
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C++ Class

❖ Complete the IntList class which represents a linkedlist of 
integers (on Codio)

❖ In particular, complete the remove_all(int) function
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C++ Class

❖ Complete the IntList class which represents a linkedlist of 
integers (on Codio)

❖ In particular, complete the remove_all(int) function
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Answer uploaded to website under 

lecture slides as IntList.cc
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Concurrency

❖ There are at least 4 bad 
practices/mistakes done with 
locks in the following code. 
Find them.
▪ Assume g_lock and k_lock

have been initialized and will be 
cleaned up.

▪ Assume that these functions will 
be called by multi-threaded 
code.

13

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c;  // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}
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Concurrency

❖ k++ could have a data race on 
it

❖ k_lock is uncessarily used 
around a+=b

❖ g_lock is used when k_lock
should be used

❖ cin >> c does not need to be 
locked, could cause significant 
delays.
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pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c;  // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}
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Scheduling

❖ Four processes are executing on one CPU following round 
robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time 
slice finishes, the one that just arrived goes into the ready queue 
before the one that just finished its time slice.

15
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Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time 
slice finishes, the one that just arrived goes into the ready queue 
before the one that just finished its time slice.

❖ What is the earliest time that process C could have 
arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how 
many fewer context switches would there be? 16
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Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time 
slice finishes, the one that just arrived goes into the ready queue 
before the one that just finished its time slice.

❖ What is the earliest time that process C could have 
arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest
17
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Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time 
slice finishes, the one that just arrived goes into the ready queue 
before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

18
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Scheduling

❖ If this algorithm used a quantum of 3 instead of 2, how 
many fewer context switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

19

Depends on if C shows 

up at time 3 or 4

Either way, only 4 

context switches, so 3 

less than quantum = 2
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Virtual Memory

❖ Consider a system with the following configuration:

▪ 32-bit address space

▪ 2GB physical memory size

▪ 16-bit addressability (2 bytes per address)

▪ 32KB page size

❖ How many entries are there in each process’s page table? 
Express your answer as a power of 2.

❖ How many frames are there of physical memory?

20
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Virtual Memory

❖ Consider a system with the following configuration:

▪ 32-bit address space

▪ 2GB physical memory size

▪ 16-bit addressability (2 bytes per address)

▪ 32KB page size

❖ How many entries are there in each process’s page table?
Express your answer as a power of 2.

▪ 32-bit address space -> 232 addresses. 2 bytes per address -> 233

bytes in an address space.

▪ 32KB = 32 * 210= 215

▪ 233/215= 218 pages which is the number of entries in a page table

21
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Virtual Memory

❖ Consider a system with the following configuration:

▪ 32-bit address space

▪ 2GB physical memory size

▪ 16-bit addressability (2 bytes per address)

▪ 32KB page size

❖ How many frames are there of physical memory?

▪ 2 GB = 2 * 230 -> 231 bytes of physical memory

▪ Each frame is 32KB -> 215 bytes

▪ 231 / 215 = 216 frames

22
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Caching (LRU)

❖ Consider that we have physical memory that can hold 4 
pages of memory and uses LRU for replacement. Come up 
with an example scenario where having this policy hurts 
performance.

23
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Caching

❖ Consider that we have physical memory that can hold 4 
pages of memory and uses LRU for replacement. Come up 
with an example scenario where having this policy hurts 
performance.

❖ Consider the case where we had 5 pages of memory A, B, 
C, D, and E. We access them in order on a loop, so after 
we access page D we access Page E. Then we access page 
A, then page B…

❖ This results in the page we want to access never being in 
the cache

❖ This is called thrashing
24
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