
CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Midterm Review
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

❖ Which topic do you want to cover for the review?

2

pollev.com/tqm

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Upcoming Due Dates

❖ HW2 (Threads) Due TONIGHT @ 11:59 pm

▪ Released

❖ Midterm

▪ Take-home style on Wednesday 3/1 @ Noon till
Friday 3/3 @ noon

▪ Logistics released on Course Website

3

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Collaboration Policy

❖ You are to write up and work on the midterm on your
own. We want the work you submit to be a
representation of your own thoughts.

❖ However, we acknowledge that your peers are often one
of the best resources for understanding concepts;
therefore, we are allowing the "Gilligan's Island Rule."

4

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Gilligan’s Island Rule

❖ The Gilligan's Island Rule: You are free to meet with
fellow students and discuss assignments with them.
Writing on a board or shared piece of paper during the
meeting is acceptable; however, you should not take any
written (electronic or otherwise) record away from the
meeting. Everything that you derive from the
collaboration should be in your head.

❖ After the meeting, engage in at least a half-hour of mind-
numbing activity (like watching an episode of Gilligan's
Island), before starting to work on the assignment.

5

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Review Topics

❖ C strings & output params

❖ C++ Class

❖ Concurrency

❖ Scheduling

❖ VM

❖ Caching (LRU)

6

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

C Strings & Output Params

❖ Complete the following function (on Codio)

7

// given a string, allocates and creates a new duplicate

// of it and returns it through the output parameter "out".

// Returns false on error, returns true otherwise

void str_duplicate(char* str, char** out) {

}

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

C Strings & Output Params

❖ Complete the following function

8

// given a string, allocates and creates a new duplicate

// of it and returns it through the output parameter "out".

// Returns false on error, returns true otherwise

void str_duplicate(char* str, char** out) {

char* res = malloc((strlen(str) + 1) * sizeof(char));

*out = res;

while(*str) {

*res = *str

str++;

res++;

}

*res = *str; // null terminator

return true;

}

NOTE: There are

other possible

solutions

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

C Strings & Output Params

❖ Complete the main function

9

// given a string, duplicates it and returns it through

// the output parameter "out". Returns false on error

// returns true otherwise

void str_duplicate(char* str, char** out);

// duplicates a string literal,

// prints the duplicate, and runs without errors

int main(int argc, char** argv) {

char* sample = "Hello World!";

}

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

C Strings & Output Params

❖ Complete the main function

10

// given a string, duplicates it and returns it through

// the output parameter "out". Returns false on error

// returns true otherwise

void str_duplicate(char* str, char** out);

// duplicates a string literal,

// prints the duplicate, and runs without errors

int main(int argc, char** argv) {

char* sample = "Hello World!";

char* dup;

str_duplicate(sample, &dup);

printf("%s", dup);

free(dup);

return EXIT_SUCCESS;

}

NOTE: There are

other possible

solutions

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

C++ Class

❖ Complete the IntList class which represents a linkedlist of
integers (on Codio)

❖ In particular, complete the remove_all(int) function

11

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

C++ Class

❖ Complete the IntList class which represents a linkedlist of
integers (on Codio)

❖ In particular, complete the remove_all(int) function

12

Answer uploaded to website under

lecture slides as IntList.cc

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Concurrency

❖ There are at least 4 bad
practices/mistakes done with
locks in the following code.
Find them.
▪ Assume g_lock and k_lock

have been initialized and will be
cleaned up.

▪ Assume that these functions will
be called by multi-threaded
code.

13

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c; // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Concurrency

❖ k++ could have a data race on
it

❖ k_lock is uncessarily used
around a+=b

❖ g_lock is used when k_lock
should be used

❖ cin >> c does not need to be
locked, could cause significant
delays.

14

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c; // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Scheduling

❖ Four processes are executing on one CPU following round
robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

15

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ What is the earliest time that process C could have
arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be? 16

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ What is the earliest time that process C could have
arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest
17

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

18

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Scheduling

❖ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

19

Depends on if C shows

up at time 3 or 4

Either way, only 4

context switches, so 3

less than quantum = 2

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Virtual Memory

❖ Consider a system with the following configuration:

▪ 32-bit address space

▪ 2GB physical memory size

▪ 16-bit addressability (2 bytes per address)

▪ 32KB page size

❖ How many entries are there in each process’s page table?
Express your answer as a power of 2.

❖ How many frames are there of physical memory?

20

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Virtual Memory

❖ Consider a system with the following configuration:

▪ 32-bit address space

▪ 2GB physical memory size

▪ 16-bit addressability (2 bytes per address)

▪ 32KB page size

❖ How many entries are there in each process’s page table?
Express your answer as a power of 2.

▪ 32-bit address space -> 232 addresses. 2 bytes per address -> 233

bytes in an address space.

▪ 32KB = 32 * 210= 215

▪ 233/215= 218 pages which is the number of entries in a page table

21

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Virtual Memory

❖ Consider a system with the following configuration:

▪ 32-bit address space

▪ 2GB physical memory size

▪ 16-bit addressability (2 bytes per address)

▪ 32KB page size

❖ How many frames are there of physical memory?

▪ 2 GB = 2 * 230 -> 231 bytes of physical memory

▪ Each frame is 32KB -> 215 bytes

▪ 231 / 215 = 216 frames

22

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Caching (LRU)

❖ Consider that we have physical memory that can hold 4
pages of memory and uses LRU for replacement. Come up
with an example scenario where having this policy hurts
performance.

23

CIT 5950, Spring 2023L12: Midterm ReviewUniversity of Pennsylvania

Caching

❖ Consider that we have physical memory that can hold 4
pages of memory and uses LRU for replacement. Come up
with an example scenario where having this policy hurts
performance.

❖ Consider the case where we had 5 pages of memory A, B,
C, D, and E. We access them in order on a loop, so after
we access page D we access Page E. Then we access page
A, then page B…

❖ This results in the page we want to access never being in
the cache

❖ This is called thrashing
24

	Default Section
	Slide 1: Midterm Review Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Upcoming Due Dates
	Slide 4: Collaboration Policy
	Slide 5: Gilligan’s Island Rule
	Slide 6: Review Topics
	Slide 7: C Strings & Output Params
	Slide 8: C Strings & Output Params
	Slide 9: C Strings & Output Params
	Slide 10: C Strings & Output Params
	Slide 11: C++ Class
	Slide 12: C++ Class
	Slide 13: Concurrency
	Slide 14: Concurrency
	Slide 15: Scheduling
	Slide 16: Scheduling
	Slide 17: Scheduling
	Slide 18: Scheduling
	Slide 19: Scheduling
	Slide 20: Virtual Memory
	Slide 21: Virtual Memory
	Slide 22: Virtual Memory
	Slide 23: Caching (LRU)
	Slide 24: Caching

