
CIT5950 – Section 3: C++ Intro (Const, ref, memory & objects)

Welcome to our first in-person recitation! We’re glad that you’re here :)

References
References create aliases that we can bind to existing variables. References are not separate
variables and cannot be reassigned after they are initialized. In C++, you define a reference using:
type &name = var. The ‘&’ is similar to the ‘*’ in a pointer definition in that it modifies the type and
the space can come before or after it.

Const
Const makes a variable unchangeable after initialization, and is enforced at compile time.

const int x = 5; // Can’t assign to x
const int* xptr = &x; // Can assign to xptr, but not *xptr
int *const yptr = &y; // Can assign to *yptr, but not yptr
const int *const zptr = &z; // Can’t assign to *zptr or zptr

Class objects can be declared const too - a const class object can only call member functions that
have been declared as const, which are not allowed to modify the object instance it is being called on.

Exercise 1: Reference & const practice
a) Draw a memory diagram for the variables declared in main. It might be helpful to

distinguish variables that are constant in your memory diagram.

int main(int argc, char **argv) {
int x = 5;
int &refx = x;
int *ptrx = &x;
const int &ro_refx = x;
const int *ro_ptr1 = &x;
int *const ro_ptr2 = &x;
// ...

}

b) When would you prefer void func(int &arg); to void func(int *arg);?
Expand on this distinction for other types besides int.

c) If we have functions void foo(const int &arg); and void bar(int &arg);,
what does the compiler think about the following lines of code:

bar(refx);
bar(ro_refx);
foo(refx);

1

d) How about this code?

ro_ptr1 = (int*)0xDEADBEEF;
ptrx = &ro_refx;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think of
these like malloc() and free() with some key differences:

● Unlike malloc() and free(), new and delete are operators, not functions.
● The implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type. Syntax for
arrays is “new type[num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For anything
you called “new” on, you should at some point call “delete” to clean it up. Syntax for arrays is
“delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 2: Leaky Pointer

#include <cstdlib>

class Leaky {
public:
Leaky() { x_ = new int(5); }
private:
int* x_;

};

int main(int argc, char** argv) {
Leaky **lkyptr = new Leaky *;
Leaky *lky = new Leaky();
*lkyptr = lky;
delete lkyptr;
return EXIT_SUCCESS;

}

Assuming an instance of Leaky takes up 8 bytes (like a C-struct with just int *x_), how many bytes
of memory are leaked by this program? How would you fix the memory leaks?

2

Exercise 3: Heapy Point

Write the class definition (.h file) and class member definition (.cc file) for a class
HeapyPoint that fulfills the following specifications:

Fields
● A HeapyPoint should have three floating-point coordinates that are all stored on

the heap

Constructors and destructor
● A constructor that takes in three double arguments and initialize a HeapyPoint with

the arguments as its coordinates
● A constructor that takes in two HeapyPoints and initialize a HeapyPoint that is the

midpoint of the input points
● A destructor that frees all memory stored on the heap

Methods
● A method set_coordinates() that set the HeapyPoint’s coordinates to the three given

coordinates
● A method dist_from_origin() that returns a HeapyPoint’s distance from the origin

(0,0,0)
● A method print_point() that prints out the three coordinates of a HeapyPoint

3

