
CIT 5950 Recitation 7 - Scheduling & Virtual Memory
Welcome back to recitation! We’re glad that you’re here :)

Exercise 1 - Scheduling

Consider the following set of tasks/processes:

Name Arrival Time Running Time

Bert 2 11

Ernie 0 8

Oscar 12 20

Grover 7 15

Elmo 10 4

a) Using the Round Robin scheduling algorithm and a time slice of 8, what is the finishing time
for each?

0: Ernie arrives, starts executing
2: Bert arrives; queue is Ernie Bert
7: Grover arrives; queue is Ernie Bert Grover
8: Ernie finishes; queue is Bert Grover; Bert starts executing
10: Elmo arrives; queue is Bert Grover Elmo
12: Oscar arrives; queue is Bert Grover Elmo Oscar
16: Bert’s time slice expires (3 left); queue is Grover Elmo Oscar Bert; Grover starts
executing
24: Grover’s time slice expires (7 left); queue is Elmo Oscar Bert Grover; Elmo starts
executing
28: Elmo finishes; queue is Oscar Bert Grover; Oscar starts executing
36: Oscar’s time slice expires (12 left); queue is Bert Grover Oscar; Bert starts executing
39: Bert finishes; queue is Grover Oscar; Grover starts executing
46: Grover finishes; Oscar starts executing
54: Oscar’s time slice expires (4 left); Oscar keeps executing
58: Oscar finishes

Name Finishing Time

Bert 39

Ernie 8

Oscar 58



Grover 46

Elmo 28

b) What is the average waiting time?

Waiting time = finish – running – arrival
Bert: 39 – 11 – 2 = 26
Ernie: 8 – 8 – 0 = 0
Oscar: 58 – 20 – 12 = 26
Grover: 46 – 15 – 7 = 24
Elmo: 28 – 4 – 10 = 14
Average = (26 + 0 + 26 + 24 + 14) / 5 = 90 / 5 = 18

Question #2

Consider a system as follows:
● 32-bit address space
● 16-bit addressable
● 1GB of physical memory
● page sizes of 64kB

a) How many pages are there in virtual memory? Express your answer as a power of 2

2^17 or 128k

32-bit address space -> 2^32 addresses

16-bit (2-byte) addressable -> each address is 2 bytes -> 2^33B virtual memory

Each page is 64kB

2^33B (virtual memory size) / 64kB (page size) = 2^33 / 2^16 = 2^17 (or 128k)

b) How many frames are there in physical memory?

2^14 or 16k

Frame size = page size

Physical memory is 1GB, so 1GB (total size) / 64kB (frame size) = 2^30 / 2^16 = 2^14
(or 16k)



c) How many bits are there in each address’ page number?

17

There are 2^17 pages

To represent N pages we need log_2 N bits

So we need log 2^17 = 17 bits

d) Consider the virtual address xABCDEF01. What is its page number in hexadecimal?

x1579B

In binary, the virtual address is 1010 1011 1100 1101 1110 1111 0000 0001

There are 2^17 pages so the first 17 bits are the page number.

So the page number is 1010 1011 1100 1101 1.

In hexadecimal, that’s x1579B.



Question #3

We are working with a byte-addressable system that has a 16-bit address space, 32kB of
physical memory, and page sizes of 8kB. Assume the page table is initially empty, and then a
process generates the following sequence of virtual addresses:

x3311 0011

x1234 0001

x1255 0001

x3456 0011

xA349 1010

x7777 0111

xB222 1011

x6222 0110

a) If virtual address x5324 is requested next, which page will be evicted if using a First In
First Out (FIFO) replacement algorithm? State the page number.

001

The page number is the first three bits, because there are eight virtual pages (16-bit address
space = 64k addresses; each holds 1 byte so 64kB total; 8kB per page so 64kB/8kB = 8).

The four virtual addresses above have page numbers 000, 001, 101, and 011, and those take up
the four frames (there are four frames because there's 32kB physical memory, and 32kB/8kB =
4).

When we get virtual address x5324, the page number is 010, and this causes an eviction.

The one that’s oldest will be evicted, which in this case is the first one to be loaded, which is
page number 001.

b) Instead of using FIFO, which page will be evicted if using a Least Recently Used
(LRU) replacement algorithm? State the page number.

000

Using LRU, it's page number 000 that has been last used furthest in the past, so it gets
evicted.

c) Rather than using FIFO or LRU, imagine that the system could look into the future and



see that the next four virtual address requests (after x5324) would be as follows:

x1A23

x399A

x7282

x4A32

Knowing this information, which page should be evicted when the request for x5324
generates a page fault?

101

As explained above, when x5324 is requested, the page numbers that are in the page
table (i.e., that are mapped to frames) are 000, 001, 101, and 011, and the page
number for address x5324 is 010 (the first three bits).

Given the requests indicated above, it would make sense to indicate page number 101
(which contains the addresses xA349 and xB222), since it is not used in any of the
subsequent requests, whereas all the other page numbers are.


