
5950 Recitation 8 - Copy Constructor, Templates, and STL
Welcome back to recitation! We’re glad that you’re here :)

Copy Constructor
In C++ we can construct objects based on an already existing object with the copy constructor. C++
will synthesize one for us that works well with “simple” objects, but we encounter issues if there is any
dynamically allocated memory, or resources acquired (like an open file). Consider the following
example:

Exercise:

1) Bad Copy
Identify the memory error with the following code.

class BadCopy {
public:
BadCopy() { arr_ = new int[5]; }
~BadCopy() { delete [] arr_; }
private:
int *arr_;

};

int main(int argc, char **argv) {
BadCopy *bc1 = new BadCopy;
BadCopy *bc2 = new BadCopy(*bc1); // BadCopy's cctor

delete bc1;
delete bc2;

return EXIT_SUCCESS;
}

1

C++ Templates
An example converting an existing function to use templates is below (notice that in the template
version N is also passed in via template parameter whereas in the regular version it is a parameter):

Non-Template:
int modulo(int arg, int n) {
int result = arg % n;
return result;

}

Template:
template<typename T, int N = 2>
T modulo(T arg) {
T result = arg % N;
return result;

}

Templates can also be used for classes. A member variable of a template class can be declared using
one of the class’ template types. This is very useful for implementing data structures that support
generic types:

Generic HTKeyValue using C++ template: Generic HTKeyValue_t in C:
template <typename K, typename V> typedef uint64_t HTKey_t;
struct HTKeyValue { typedef void* HTValue_t;
K HTKey; typedef struct {
V* HTValue; HTKey_t key;

}; HTValue_t value;
} HTKeyValue_t;

On the right is an HTKeyValue_t struct definition for defining a key-value pair for a HashTable in C,
look how much cleaner it is using C++ template!

Exercise:

2) Template Class
Fill in the blanks below for the definition of a simple templated struct Node for a singly-linked list. The
struct has two public fields: a value, which is a pointer of template type T pointing to a heap
allocated payload, and a next, which is a pointer to another struct Node. The struct also has a
two-argument constructor that takes a T pointer for value and another Node<T> pointer for next.

_______________ // template type definition
struct Node {
______________ // two-argument constructor

~Node() { delete value; } // destructor cleans up the payload

______________ // public field value
______________ // public field next

};

2

C++’s Standard Template Library (STL)
Containers, iterators, algorithms (sort, find, etc.), numerics

● general – .begin(), .end(), .size(), .erase()
● template <class T> class std::vectors – .operator[](), .push_back(), .pop_back()
● template <class T> class std::list – .push_back(), .pop_back(), .push_front(),

.pop_front(), .sort()
● template <class Key, class T> class std::map – .operator[](), .insert(), .find(),

.count()
● template <class T1, class T2> struct std::pair – .first, .second

Exercises:

3) Standard Template Library
Complete the function ChangeWords below. This function has as inputs a vector of strings, and a
map of <string, string> key-value pairs. The function should return a new vector<string>
value (not a pointer) that is a copy of the original vector except that every string in the original vector
that is found as a key in the map should be replaced by the corresponding value from that key-value
pair.

Example: if vector words is {"the", "secret", "number", "is", "xlii"} and map subs is
{{"secret", "magic"}, {"xlii", "42"}}, then ChangeWords(words, subs) should return a
new vector {"the", "magic", "number", "is", "42"}.

Hint: Remember that if m is a map, then referencing m[k] will insert a new key-value pair into the map
if k is not already a key in the map. You need to be sure your code doesn’t alter the map by adding
any new key-value pairs. (Technical nit: subs is not a const parameter because you might want to
use its operator[] in your solution, and operator[] does not work on a const map. It’s fine to
use [] as long as you don’t actually change the contents of the map subs.)

Write your code below. Assume that all necessary headers have already been written for you.

using namespace std;
vector<string> ChangeWords(const vector<string> &words,

map<string,string> &subs) {

}

3

4) STL Debugging
Here is a little program that has a small class Thing and main function (assume that necessary
#includes and using namespace std; are included).

class Thing {
public:
Thing(int n): n_(n) { }
int getThing() const { return n_; }
void setThing(int n) { n_ = n; }
private:
int n_;

};

int main() {
Thing t(17);
vector<Thing> v;
v.push_back(t);

}

This code compiled and worked as expected, but then we added the following two lines of code (plus
the appropriate #include <set>):

set<Thing> s;
s.insert(t);

The second line (s.insert(t)) failed to compile and produced dozens of spectacular compiler error
messages, all of which looked more-or-less like this (edited to save space):

In file included from string:48:0, from bits/locale_classes.h:40, from
bits/ios_base.h:41,from ios:42,from ostream:38, from /iostream:39,from
thing.cc:3: bits/stl_function.h: In instantiation of 'bool
std::less<_Tp>::operator()(const _Tp&, const _Tp&) const [with _Tp =
Thing]': <<many similar lines omitted>> thing.cc:37:13: required from here
bits/stl_function.h:
387:20: error: no match for 'operator<' (operand types are 'const Thing'
and 'const Thing') { return __x < __y; }

What on earth is wrong? Somehow class Thing doesn’t work with set<Thing> even though insert
is the correct function to use here. (a) What is the most likely reason, and (b) what would be needed
to fix the problem? (Be brief but precise – you don’t need to write code in your answer, but you can if
that helps make your explanation clear.)

4

