
5950 Section 9 - C++ Smart Pointers and Fork
Welcome back to section! We’re glad that you’re here :)

C++ Smart Pointers
C++’s smart pointers can be used to automatically manage memory if used properly.

● std::unique_ptr – .get(), .release(), .reset()
● std::shared_ptr – .get(), .use_count(), .unique()
● std::weak_ptr – .lock(), .use_count(), .expired()

1) “Smart” LinkedList
Consider the Node struct below. Convert the Node struct to be “smart” by using shared_ptrs.

#include <memory>
using std::shared_ptr;

template <typename T>
struct Node {
Node(T* val, Node<T>* node): value(shared_ptr<T>(val)),

next(shared_ptr<Node<T>>(node)) {}

~Node() { delete value; }

shared_ptr<T> value;
shared_ptr<Node<T>> next;

};

After the conversion, we should be able to get rid of the destructor and the following program that
uses this Node struct should have no memory leak. (Note that we never called delete ourselves!)
Try checking that your “smart” node doesn’t leak memory!

#include <iostream>

using std::cout;
using std::endl;

int main() {
shared_ptr<Node<int>> head =

shared_ptr<Node<int>>(new Node<int>(new int(351),
nullptr));

head->next = shared_ptr<Node<int>>(new Node<int>(new int(333), nullptr));
shared_ptr<Node<int>> iter = head;
while (iter != nullptr) {
cout << *(iter->value) << endl;
iter = iter->next;

}

1

}

Processes & IPC
Process and Threads:

● A process has a virtual address space. Each process is started with a single thread but can
create additional threads.

● A thread contains a sequential execution of a program and is contained within a process.

Process Functions:
There are a variety of functions commonly used with processes:

● pid_t fork()
○ Creates a new process, returning 0 to the newly created child process and the pid of

the child process to the parent process.
● void exit(int status)

○ Exits the currently running process with specified status
● pid_t waitpid(pid_t child, int* wstatus, int options)

○ Waits for the specified child process to exit. Gets their status through the output
parameter wstatus. Options can be specified, leave as 0 for default

● pid_t wait(int* wstatus)
○ Waits for any child process to exit. Gets their status through the output parameter

wstatus.
● execvp(char* file, char* argv[])

○ Executes a specific command/program with specified arguments
○ argv must have NULL/nullptr as it’s last value
○ argv[0] should have the same values as file

● pipe(int pipefds[2])
○ OS creates a pipe to support IPC and initializes fd[0] and fd[1] to contain the file

descriptors to read from (fd[0]) and write to (fd[1]) the pipe.

Process and Files:
In addition to using pipes, once can use files to communicate between processes. Just as with a pipe,
there is one instance of a particular file on the system. However, each process can have their own file
descriptors to access that file/pipe. This means that if one process were to close a file, it could still be
open in another process.

2) Fork Pipe
Consider the incomplete program below. This is a simplified version of some of the lecture code,
where we are trying to write a program that makes use of fork(), exit(), waitpid(), execvp() and pipe()
to fork a process running the numbers program and feed in user input from the parent process. Fill in
the necessary blanks below to complete the program.

2

// writes the contents of the specified string to the specified fd
void wrapped_write(string to_write, int fd);

int main (int argc, char** argv) {
// create a pipe to send input to program
int in_pipe[2];
pipe(__in_pipe______);

pid_t pid = fork();

if (pid == 0) {
// child
close(___in_pipe[1]___________); // close write end

// replace stdin with read end of pipe
dup2(____in_pipe[0]___________, STDIN_FILENO);

close(___in_pipe[0]__________); // close read end since it has been
duplicated

// exec the program "./numbers" with no command line args
string command(_”./numbers”______________);
char* args[] = {______”./numbers”, nullptr________________};
execvp(__command.c_str()___, _______args_________);

// should NEVER get here
return EXIT_FAILURE;

} else {
close(______in_pipe[0]________); // close read end

// write inputs to the pipe
string inputs = "30\n40\n50\n6";
wrapped_write(to_echo, _____in_pipe[1]_______);

// close pipe so that exec'd
// program knows there is no more piped contents to read
close(______in_pipe[1]______________);

// wait for child to finish
waitpid(__pid, nullptr, 0________________);

}

return EXIT_SUCCESS;
}

3

