
CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

C++ Classes & References
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Logistics

❖ HW1 (FileReaders) Due Thursday 2/9 @ 11:59 pm

▪ To be released shortly after Lecture

▪ After this lecture, you should have everything you need to
complete the assignment

2

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Pre-Semester Survey Response

❖ Expectations:

▪ Learn C++

▪ Learn systems stuff to flesh out what 5930 taught

▪ Help with internships & future courses (5050, 5480, etc)

▪ Multithreading, networking, etc.

❖ This course can’t do everything, trying to balance all of
these while respecting the job hunt & other courses

3

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Pre-Semester Survey Response (Concerns)

❖ Struggle with C programming

▪ C programming is required, but people usually find C++ to be
“different” in a (usually) better way.

❖ 5930 is a pre-req

▪ You don’t need everything from 5930. You just need:

• A high-level idea of memory layout (stack & heap)

• General understanding of what assembly is & how it works

• C programming

❖ Difficulty

▪ HW0 was on the harder side, future assignments should be
better.

4

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Pre-Semester Survey Response
(what works well)
❖ Things I already do:

▪ Lecture recordings & posted slides

▪ OH

▪ Good visuals

▪ Clear HW grading & specifications

▪ Kindly answer "stupid" questions in lecture

▪ Supporting/connecting assignments to lecture content

▪ In class activities (I have had some, will try to add more)

❖ Let me know if I can do any of these better though

5

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Pre-Semester Survey Response
(what works well)
❖ Things I sort of do?:

▪ I don’t do pre-lecture quizzes & videos,
but I do have recordings and quizzes afterwards.

▪ Don’t have weekly "assignments", but I do have weekly check ins

6

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Pre-Semester Survey Response
(what works well)
❖ Things I do not do (as of now):

▪ Exam guides & study guides

• Exams are different in this course; I find that they are less necessary

▪ Post HW solutions after deadline

• Doesn’t really work with unlimited extensions 

▪ Extra Credit

• Haven’t really thought about it much, instead using a “mastery”
grading approach. Will think if there are ways to integrate this.

7

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ POSIX I/O

❖ Locality

8

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Hardware

Firmware / Drivers

Operating System / Kernel

Software / Applications

Libraries, APIs, System Calls

Algorithms

Today, we are here!

Math / Logic

Remember This?

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are
portable

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs have permission to access which files,
memory locations, pixels on the screen, etc. and when

10

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

11

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
…

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

System Call Trace (high-level view)

12

OS
(trusted)

HW (trusted)

User Process
(untrusted)A CPU (thread of

execution) is running user-
level code in Process A;

the CPU is set to
unprivileged mode.

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

User Process
(untrusted)

System Call Trace (high-level view)

13

Code in Process invokes a
system call; the hardware

then sets the CPU to
privileged mode and traps
into the OS, which invokes

the appropriate system
call handler.

sy
st

em
 c

al
l

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

14

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

User Process
(untrusted)

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

15

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

User Process
(untrusted)

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

16

User Process
(untrusted)The process continues

executing whatever
code is next after the

system call invocation.

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one
of several places:

• In your program’s code

• In glibc, a shared library containing
the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

17

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 1

❖ Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel

▪ e.g. strcmp() from stdio.h

▪ There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

• But after symbols are resolved,
invoking glibc routines is basically
as fast as a function call within your
program itself!

18

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled
by glibc, but they in turn
invoke Linux system calls

▪ e.g. POSIX wrappers around Linux
syscalls

• POSIX readdir() invokes the
underlying Linux readdir()

▪ e.g. C stdio functions that read
and write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
close(), write(), etc.

19

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 3

❖ Your program can choose to
directly invoke Linux system calls
as well

▪ Nothing is forcing you to link with
glibc and use it

▪ But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

20

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

A System Call Analogy

❖ The OS is a very wise and knowledgeable wizard

▪ It has many dangerous and powerful artifacts, but it doesn’t trust
others to use them. Will perform tasks on request.

❖ If a civilian wants to access a “magical” feature, they must
fill out a request to the wizard.

▪ It takes some time for the wizard to start processing the request,
they must ensure they do everything safely

▪ The wizard will handle the powerful artifacts themselves. The user
WILL NOT TOUCH ANYTHING.

▪ Wizard will take a second to analyze results and put away artifacts
before giving results back to the user.

21

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2: Linux system calls

▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3: glibc/libc library functions

▪ man 3 intro

❖ The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

22

http://www.kernel.org/

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ POSIX I/O

❖ Locality

23

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Aside: File I/O & Disk

❖ File System:

▪ Provides long term storage of data:

• persists after a program terminates

• persists after computer turns off

▪ Data is organized into files & directories

• A directory is pretty much a “Folder”

▪ Interaction with the file system is
handled by the operating system and
hardware

24

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

C Standard Library I/O

❖ In 5930, you’ve seen the C standard library to access files
▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

❖ These are convenient and portable

▪ They are buffered*

▪ They are implemented using lower-level OS calls

25

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

From C to POSIX

❖ Most UNIX-en support a common set of lower-level file
access APIs: POSIX – Portable Operating System Interface
▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ C stdlib doesn’t provide everything POSIX does

• You will have to use these to read file system directories and for
network I/O, so we might as well learn them now

26

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

• Similar to fopen()

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

• Defaults: 0 is stdin, 1 is stdout, 2 is stderr

– -1 indicates error

27

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

...

int fd = open("foo.txt", O_RDONLY);

if (fd == -1) {

perror("open failed");

exit(EXIT_FAILURE);

}

...

close(fd);

Used to identify

a file w/ the OS

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

• Advances forward in the file by number
of bytes read

▪ There are some surprising error modes (check errno)

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)

• And many others…

28

ssize_t read(int fd, void* buf, size_t count);

Number of bytes

Defined

in

errno.h

Stores read

result in buf

errno

==

EINTR

Return Value

0-1 > 0

read()

other

errno

==

count

<

count

You’re

done!

Keep

reading

Error msg,

exit

Try

again!

eof

signed

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

29

char* buf = ...; // buffer of size n

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

result = read(fd, ______, bytes_left);

if (result == -1) {

if (errno != EINTR) {

// a real error happened,

// so return an error result

}

// EINTR happened,

// so do nothing and try again

continue;

}

bytes_left -= result;

}

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…Keyword that jumps

to beginning of loop

pollev.com/tqm

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

30

char* buf = ...; // buffer of size n

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

result = read(fd, ______, bytes_left);

if (result == -1) {

if (errno != EINTR) {

// a real error happened,

// so return an error result

}

// EINTR happened,

// so do nothing and try again

continue;

}

bytes_left -= result;

}

A. buf

B. buf + bytes_left

C. buf + bytes_left - n

D. buf + n - bytes_left

E. We’re lost…Keyword that jumps

to beginning of loop

buf

if first read only reads n/4 bytes

Want to start reading here

buf + n/4

bytes_left = n * 3/4

= buf + n - bytes_left

pollev.com/tqm

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

One method to read() 𝑛 bytes

31

int fd = open(filename, O_RDONLY);

char* buf = ...; // buffer of appropriate size

int bytes_left = n;

int result;

while (bytes_left > 0) {

result = read(fd, buf + (n - bytes_left), bytes_left);

if (result == -1) {

if (errno != EINTR) {

// a real error happened, so exit the program

// print out some error message to cerr

exit(EXIT_FAILURE);

}

// EINTR happened, so do nothing and try again

continue;

} else if (result == 0) {

// EOF reached, so stop reading

break;

}

bytes_left -= result;

}

close(fd);

To prevent an infinite loop

Keyword that jumps to beginning of loop

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Other Low-Level Functions

❖ Read man pages to learn about:
▪ write() – write data

• #include <unistd.h>

▪ lseek() – reposition and/or get file offset

• #include <unistd.h>

▪ opendir(), readdir(), closedir() – deal with directory
listings

• Make sure you read the section 3 version (e.g. man 3 opendir)

• #include <dirent.h>

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

32

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

HW1 Overview

❖ In HW1, you will be implementing two file readers

❖ SimpleFileReader

▪ A relatively simple C++ class that acts as a wrapper around POSIX

❖ BufferedFileReader

▪ Similar to SimpleFileReader but maintains an internal buffer for
improver performance due to locality

▪ Also implements token parsing

33

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ POSIX I/O

❖ Locality

34

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Locality

❖ A major factor in performance is the locality of data

▪ data that is “closer” is quicker to fetch

❖ Have you seen this?

▪ More on this when
talking about memory
(Jeff Dean from LADIS ’09)

35

Numbers are out of date, but

order of magnitude is same

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Buffering

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one reads with fread(), a lot of data is copied into a
buffer allocated by stdio inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer

• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 or 4096 bytes)

▪ Similar thing happens when you write to a file

36

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Buffering Example

37

int main(int argc, char** argv) {

char buf[2];

FILE* fin = fopen("hi.txt", "rb");

// read "hi" one char at a time

fread(&buf, sizeof(char), 1, fin);

fread(&buf+1, sizeof(char), 1, fin);

fclose(fin);

return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Buffering Example

38

int main(int argc, char** argv) {

char buf[2];

FILE* fin = fopen("hi.txt", "rb");

// read "hi" one char at a time

fread(&buf, sizeof(char), 1, fin);

fread(&buf+1, sizeof(char), 1, fin);

fclose(fin);

return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

……

h i

buf

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

h i

Read as much as

you can from the

file

Copy out what

was requested

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Buffering Example

39

int main(int argc, char** argv) {

char buf[2];

FILE* fin = fopen("hi.txt", "rb");

// read "hi" one char at a time

fread(&buf, sizeof(char), 1, fin);

fread(&buf+1, sizeof(char), 1, fin);

fclose(fin);

return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

Get next char

from buffer

No need to go to file!

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Buffering Example

40

int main(int argc, char** argv) {

char buf[2];

FILE* fin = fopen("hi.txt", "rb");

// read "hi" one char at a time

fread(&buf, sizeof(char), 1, fin);

fread(&buf+1, sizeof(char), 1, fin);

fclose(fin);

return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h i

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Buffering Example

41

int main(int argc, char** argv) {

char buf[2];

FILE* fin = fopen("hi.txt", "rb");

// read "hi" one char at a time

fread(&buf, sizeof(char), 1, fin);

fread(&buf+1, sizeof(char), 1, fin);

fclose(fin);

return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

CIT 5950, Spring 2023L04: POSIX I/OUniversity of Pennsylvania

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not
mean the data has actually been written

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth

▪ Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

❖ When is buffering faster? Slower?

42

Many small writes

Or only writing a little

Large writes

	Default Section
	Slide 1: C++ Classes & References Computer Systems Programming, Spring 2023
	Slide 2: Logistics
	Slide 3: Pre-Semester Survey Response
	Slide 4: Pre-Semester Survey Response (Concerns)
	Slide 5: Pre-Semester Survey Response (what works well)
	Slide 6: Pre-Semester Survey Response (what works well)
	Slide 7: Pre-Semester Survey Response (what works well)
	Slide 8: Lecture Outline
	Slide 9
	Slide 10: What’s an OS?
	Slide 11: OS: Abstraction Provider
	Slide 12: System Call Trace (high-level view)
	Slide 13: System Call Trace (high-level view)
	Slide 14: System Call Trace (high-level view)
	Slide 15: System Call Trace (high-level view)
	Slide 16: System Call Trace (high-level view)
	Slide 17: “Library calls” on x86/Linux
	Slide 18: “Library calls” on x86/Linux: Option 1
	Slide 19: “Library calls” on x86/Linux: Option 2
	Slide 20: “Library calls” on x86/Linux: Option 3
	Slide 21: A System Call Analogy
	Slide 22: If You’re Curious
	Slide 23: Lecture Outline
	Slide 24: Aside: File I/O & Disk
	Slide 25: C Standard Library I/O
	Slide 26: From C to POSIX
	Slide 27: open()/close()
	Slide 28: Reading from a File
	Slide 29: One way to read() n bytes
	Slide 30: One way to read() n bytes
	Slide 31: One method to read() n bytes
	Slide 32: Other Low-Level Functions
	Slide 33: HW1 Overview
	Slide 34: Lecture Outline
	Slide 35: Locality
	Slide 36: Buffering
	Slide 37: Buffering Example
	Slide 38: Buffering Example
	Slide 39: Buffering Example
	Slide 40: Buffering Example
	Slide 41: Buffering Example
	Slide 42: Why NOT Buffer?

