
CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

The OS & Processes
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Logistics

❖ HW1 (FileReaders) Due Thursday 2/9 @ 11:59 pm

▪ Released, autograder coming out later this week

▪ You should have everything you need to complete the assignment

▪ Recitation should give helpful practice with writing POSIX code

2

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Exceptions

❖ Processes

❖ fork()

3

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient for a useful system:
Difficult to react to changes in system state

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Exceptions

• Change in control flow in response to a system event
(i.e., change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software

What we will be looking at today

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Exceptions

❖ Processes

❖ fork()

7

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Exceptions

❖ An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

0
1

2
...

n-1

Exception Tables

❖ Each type of event has a
unique exception number k

❖ k = index into exception table
(a.k.a. interrupt vector)

❖ Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Asynchronous Exceptions (Interrupts)

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Synchronous Exceptions
❖ Caused by events that occur as a result of executing an

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but possibly recoverable

• Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Exceptions

❖ Processes

❖ fork()

12

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

13

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Computers as we know them now

❖ In CIT 5930, you learned about hardware, transistors,
CMOS, gates, etc.

❖ Once we got to programming, our computer looks
something like:

14

Computer

Operating System

Process

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

15

Computer

Operating System

P1 P2 P3 Pn…

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

16

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate
process

• Scheduling of processors onto
cores done by kernel

▪ This is called “Parallelism”

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CPU

Registers

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Concurrent Processes

❖ Each process is a logical control flow.

❖ Two processes run concurrently (are concurrent) if
their flows overlap in time

❖ Otherwise, they are sequential

❖ Examples (running on single core):

▪ Concurrent: A & B, A & C

▪ Sequential: B & C
Process A Process B Process C

Time

Note how there is no

instant where 2

processes are running

Assuming ONE

CPU/Core

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Context Switching

❖ Processes are managed by a shared chunk of memory-
resident OS code called the kernel

▪ Important: the kernel is not a separate process, but rather runs
as part of some existing process.

❖ Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

User View of Concurrent Processes

❖ Control flows for concurrent processes are physically
disjoint in time

❖ However, we can think of concurrent processes as
running in parallel with each other

❖ Above is what a User may think is going on. At any
moment in time only one process has its instructions
being executed at a time (ignoring multiple cores).

Time

Process A Process B Process C

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Parallel Processes

❖ Each process is a logical control flow.

❖ Two processes run parallel if their flows overlap at a
specific point in time. (Multiple instructions are
performed on the CPU at the same time

❖ Examples (running on dual core):

▪ Parallel: A & B, A & C

▪ Sequential: B & C

Process A Process B Process C

Time

Dual = 2

Assuming more

than one

CPU/Core

Note How there

is overlap at

specific points of

time

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Lecture Outline

❖ Control Flow

❖ Exceptions

❖ Processes

❖ fork()

27

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Creating and Terminating Processes

From a programmer’s perspective, we can think of a
process as being in one of three states

❖ Running

▪ Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

❖ Stopped

▪ Process execution is suspended and will not be scheduled
until further notice (next lecture when we study signals)

❖ Terminated
▪ Process is stopped permanently

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Terminating Processes

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status)

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an
integer value from the main routine

❖ exit is called once but never returns.

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the
parent

30

pid_t fork();

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

31

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

32

parent

OS

fork()

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

33

parent child

OS

clone

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

34

parent child

OS

child pid 0

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

"simple" fork() example

35

fork();

cout << "Hello!\n";

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will some
kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling other processes

▪ Choosing which one to run

▪ Deciding how long to run it

36

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide what
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of
time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more…

❖ More on this later. For now: think of scheduling as non-
deterministic, details handled by the OS. 37

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

"simple" fork() example

38

int x = 3;

fork();

x++;

cout << x << endl;

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

fork() example

39

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

fork() example

40

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

Parent Process (PID = X) Child Process (PID = Y)

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

fork() example

41

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

Parent Process (PID = X) Child Process (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

Prints "Parent" Prints "Child"Which prints first?
Non-deterministic

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Another fork() example

42

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Another fork() example

43

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

CIT 5950, Spring 2023L05: ProcessesUniversity of Pennsylvania

Another fork() example

44

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

fork_ret = Y fork_ret = 0

Always prints "5930" Always prints "5950"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!

	Default Section
	Slide 1: The OS & Processes Computer Systems Programming, Spring 2023
	Slide 2: Logistics
	Slide 3: Lecture Outline
	Slide 4: Control Flow
	Slide 5: Altering the Control Flow
	Slide 6: Exceptional Control Flow
	Slide 7: Lecture Outline
	Slide 8: Exceptions
	Slide 9: Exception Tables
	Slide 10: Asynchronous Exceptions (Interrupts)
	Slide 11: Synchronous Exceptions
	Slide 12: Lecture Outline
	Slide 13: Definition: Process
	Slide 14: Computers as we know them now
	Slide 15: Multiple Processes
	Slide 16: OS: Protection System
	Slide 17: Multiprocessing: The Illusion
	Slide 18: Multiprocessing: The (Traditional) Reality
	Slide 19: Multiprocessing: The (Traditional) Reality
	Slide 20: Multiprocessing: The (Traditional) Reality
	Slide 21: Multiprocessing: The (Traditional) Reality
	Slide 22: Multiprocessing: The (Modern) Reality
	Slide 23: Concurrent Processes
	Slide 24: Context Switching
	Slide 25: User View of Concurrent Processes
	Slide 26: Parallel Processes
	Slide 27: Lecture Outline
	Slide 28: Creating and Terminating Processes
	Slide 29: Terminating Processes
	Slide 30: Creating New Processes
	Slide 31: fork() and Address Spaces
	Slide 32: fork()
	Slide 33: fork()
	Slide 34: fork()
	Slide 35: "simple" fork() example
	Slide 36: OS: The Scheduler
	Slide 37: Scheduler Considerations
	Slide 38: "simple" fork() example
	Slide 39: fork() example
	Slide 40: fork() example
	Slide 41: fork() example
	Slide 42: Another fork() example
	Slide 43: Another fork() example
	Slide 44: Another fork() example

