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Logistics

❖ HW1 (FileReaders) Due Thursday 2/9 @ 11:59 pm

▪ Released, autograder coming out later this week

▪ You should have everything you need to complete the assignment

▪ Recitation should give helpful practice with writing POSIX code
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Lecture Outline

❖ Control Flow

❖ Exceptions

❖ Processes

❖ fork()
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Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes 
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time
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Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient  for a useful system: 
Difficult to react to changes in system state 

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”
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Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Exceptions 

• Change in control flow in response to a system event 
(i.e.,  change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software 

What we will be looking at today
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Lecture Outline

❖ Control Flow

❖ Exceptions

❖ Processes

❖ fork()
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Exceptions

❖ An exception is a transfer of control to the OS kernel in 
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next
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0
1

2
...

n-1

Exception Tables

❖ Each type of event has a 
unique exception number k

❖ k = index into exception table 
(a.k.a. interrupt vector)

❖ Handler k is called each time 
exception k occurs

Exception
Table

Code for  
exception handler 0

Code for 
exception handler 1

Code for
exception handler 2

Code for 
exception handler n-1

...

Exception 
numbers
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Asynchronous Exceptions (Interrupts)

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk



CIT 5950, Spring 2023L05:  ProcessesUniversity of Pennsylvania

Synchronous Exceptions
❖ Caused by events that occur as a result of executing an 

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but possibly recoverable 

• Examples: page faults (recoverable), protection faults 
(unrecoverable), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program
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Lecture Outline

❖ Control Flow

❖ Exceptions

❖ Processes

❖ fork()
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Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

13

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP
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Computers as we know them now

❖ In CIT 5930, you learned about hardware, transistors, 
CMOS, gates, etc.

❖ Once we got to programming, our computer looks 
something like:

14

Computer

Operating System

Process
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Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

15

Computer

Operating System

P1 P2 P3 Pn…
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OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of 

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between 
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly
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Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data
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Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking) 
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

Stack

Heap

Code
Data

Saved 
registers

…
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU
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Memory
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CPU
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack
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Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate 
process

• Scheduling of processors onto 
cores done by kernel

▪ This is called “Parallelism”

CPU

Registers

Memory

Stack

Heap

Code
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Stack
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Stack

Heap

Code
Data

Saved 
registers

…

CPU
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Concurrent Processes

❖ Each process is a logical control flow. 

❖ Two processes run concurrently (are concurrent) if 
their flows overlap in time

❖ Otherwise, they are sequential

❖ Examples (running on single core):

▪ Concurrent: A & B, A & C

▪ Sequential: B & C
Process A Process B Process C

Time

Note how there is no 

instant where 2 

processes are running

Assuming ONE

CPU/Core
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Context Switching

❖ Processes are managed by a shared chunk of memory-
resident OS code called the kernel

▪ Important: the kernel is not a separate process, but rather runs 
as part of some existing process.

❖ Control flow passes from one process to another via a 
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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User View of Concurrent Processes

❖ Control flows for concurrent processes are physically 
disjoint in time

❖ However, we can think of concurrent processes as 
running in parallel with each other

❖ Above is what a User may think is going on. At any 
moment in time only one process has its instructions
being executed at a time (ignoring multiple cores). 

Time

Process A Process B Process C



CIT 5950, Spring 2023L05:  ProcessesUniversity of Pennsylvania

Parallel Processes

❖ Each process is a logical control flow. 

❖ Two processes run parallel if their flows overlap at a 
specific point in time. (Multiple instructions are 
performed on the CPU at the same time

❖ Examples (running on dual core):

▪ Parallel: A & B, A & C

▪ Sequential: B & C

Process A Process B Process C

Time

Dual = 2

Assuming more 

than one

CPU/Core

Note How there 

is overlap at 

specific points of 

time
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Lecture Outline

❖ Control Flow

❖ Exceptions

❖ Processes

❖ fork()
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Creating and Terminating Processes

From a programmer’s perspective, we can think of a 
process as being in one of three states

❖ Running

▪ Process is either executing, or waiting to be executed and will 
eventually be scheduled (i.e., chosen to execute) by the kernel

❖ Stopped

▪ Process execution is suspended and will not be scheduled 
until further notice (next lecture when we study signals)

❖ Terminated
▪ Process is stopped permanently
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Terminating Processes

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next 
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status)

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an 
integer value from the main routine

❖ exit is called once but never returns.
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Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the 
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the 
parent

30

pid_t fork();
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fork() and Address Spaces

❖ Fork causes the OS
to clone the 
address space
▪ The copies of the 

memory segments are 
(nearly) identical

▪ The new process has 
copies of the parent’s 
data, stack-allocated 
variables, open file 
descriptors, etc.

31

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

32

parent

OS

fork()
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

33

parent child

OS

clone
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

34

parent child

OS

child pid 0
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"simple" fork() example

35

fork();

cout << "Hello!\n";
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OS: The Scheduler

❖ When switching between processes, the OS will some 
kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling other processes

▪ Choosing which one to run

▪ Deciding how long to run it

36
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Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide what 
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of 
time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more…

❖ More on this later. For now: think of scheduling as non-
deterministic, details handled by the OS. 37
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"simple" fork() example

38

int x = 3;

fork();

x++;

cout << x << endl;
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fork() example

39

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}
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fork() example

40

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

Parent Process (PID = X) Child Process  (PID = Y)
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fork() example

41

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

Parent Process (PID = X) Child Process  (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

cout << "Child" << endl;

} else {

cout << "Parent" << endl;

}

Prints "Parent" Prints "Child"Which prints first?
Non-deterministic
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Another fork() example

42

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950; 

} else {

x = 5930;

}

cout << x << endl;
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Another fork() example

43

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950; 

} else {

x = 5930;

}

cout << x << endl;

fork()

Parent Process (PID = X) Child Process  (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950; 

} else {

x = 5930;

}

cout << x << endl;
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Another fork() example

44

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950; 

} else {

x = 5930;

}

cout << x << endl;

fork()

Parent Process (PID = X) Child Process  (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950; 

} else {

x = 5930;

}

cout << x << endl;

fork_ret = Y fork_ret = 0

Always prints "5930" Always prints "5950"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!
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