University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Processes (Cont.) & Threads
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai
Mati Davis Donglun He
Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

University of Pennsylvania LO6: Processes (cont.) & Threads

CIT 5950, Spring 2023

Logistics

+» HW1 (FileReaders) Due Thursday 2/9 @ 11:59 pm

= Released, autograder coming out later TODAY

" You should have everything you need to complete the assignment
= Recitation last week gave helpful practice with writing POSIX code

University of Pennsylvania LO6: Processes (cont.) & Threads

Lecture Outline

+ Review of Processes

J
>

+ Interleaving & Scheduling
» wait & sleep

+ Threads

« pthreads

CIT 5950, Spring 2023

CIT 5950, Spring 2023

University of Pennsylvania LO6: Processes (cont.) & Threads

Definition: Process

+ Definition: An instance of a program

that is being executed
(or is ready for execution)

+ Consists of:
" Memory (code, heap, stack, etc)

= Registers used to manage execution
(stack pointer, program counter, ...)

= QOther resources

SP=>

Stack

!

I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

P =>

Read-Only Segments
.text, .rodata

University of Pennsylvania

LO6: Processes (cont.) & Threads

OS: Protection System

O/
0‘0

R/
0‘0

OS isolates process from each other

= Each process seems to have exclusive use of
memory and the processor.
« Thisis an illusion

« More on Memory when we talk about virtual
memory later in the course

= OS permits controlled sharing between
processes

- E.g. through files, the network, etc.

OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

Process A
(untrusted)

CIT 5950, Spring 2023

Process B
(untrusted)
Process C
(untrusted)

ON
(trusted)

Process D
(untrusted)

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Creating New Processes

+« |p1d t fork();

" Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

- *almost everything

" The new process has a separate virtual address space from the
parent

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

fork () and Address Spaces

« Fork causes the OS

Stack Stack
to clone the SPIE SPI
address space v v
= The copies of the | |
memory_SEgments are Shared Libraries Shared Libraries
(nearly) identical
= The new process has 1 1
copies of the parent’s
Heap (malloc/free) Heap (malloc/free)
data, stack-allocated
: : Read/Write Segment Read/Write Segment
Varlak.)les’ Open file .data, .bss .data, .bss
descriptors, etc.
Read-Only Segment Read-Only Segment
PC== .text, .rodata PC=> .text, .rodata
fork ()

PARENT CHILD

University of Pennsylvania

LO6: Processes (cont.) & Threads

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
 Child receives a 0

CIT 5950, Spring 2023

University of Pennsylvania L06: Processes (cont.) & Threads

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
 Child receives a 0

clone

CIT 5950, Spring 2023

University of Pennsylvania

fork ()

+« fork () has peculiar semantics
" The parent invokes fork ()
" The OS clones the parent

" Both the parent and the child return
from fork

- Parent receives child’s pid
 Child receives a 0

LO6: Processes (cont.) & Threads

child pid

CIT 5950, Spring 2023

10

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Terminating Processes

« Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next
lecture)

= Returning from the main routine
= Calling the exit function

« vold exit (int status)
" Terminates with an exit status of status

= Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an
integer value from the main routine

« exit is called once but never returns.

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

"simple" fork() example

._Lfork();

cout << "Hello!\n'";
exit (EXIT SUCCESS);

Privts "Hello ! \n" twice, once from each process

12

CIT 5950, Spring 2023

University of Pennsylvania L06: Processes (cont.) & Threads

"simple" fork() example

—Lint X = 33

fork () ;

X++;

cout << x << endl;
exit (EXIT SUCCESS);

Prints "4\n" twice, once from each process.
Each process has separate memory, and thus
their oww independent copy of X

13

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Process States

From a programmer’s perspective, we can think of a
process as being in one of three states

+» Running

" Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

+ Stopped

" Process execution is suspended and will not be scheduled
until further notice (next lecture when we study signals)

+» Terminated
" Process is stopped permanently

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

OS: The Scheduler

+» When switching between processes, the OS will some
kernel code called the “Scheduler”

% The scheduler runs when a process:
= starts (“arrives to be scheduled”),
" Finishes
= Blocks (e.g., waiting on something, usually some form of 1/0)
" Has run for a certain amount of time

+ It is responsible for scheduling other processes
® Choosing which one to run
= Deciding how long to run it

15

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Scheduler Considerations

+» The scheduler has a scheduling algorithm to decide what
runs next.

+ Algorithms are designed to consider many factors:
" Fairness: Every program gets to run
= Liveness: That “something” will eventually happen
" Throughput: Number of “tasks” completed over an interval of
time
= Wait time: Average time a “task” is “alive” but not running

= Aot more...

+» More on this later. For now: think of scheduling as non-
deterministic, details handled by the OS. 6

University of Pennsylvania

Another fork () example

LO6: Processes (cont.) & Threads

int x;

1f (fork ret == 0)
x = 5950;

} else {
X = 5930;

}

cout << x << endl;

_Lpid_t fork ret = fork();

{

CIT 5950, Spring 2023

17

University of Pennsylvania

LO6: Processes (cont.) & Threads

Another fork () example

Parent Process (PID = X)

Child Process (PID =Y)

_Lpid_t fork ret = fork();
int x;
if (fork ret == 0) {
x = 5950;
} else {
X = 5930;
}
cout << x << endl;

CIT 5950, Spring 2023

—ppid t fork ret = fork();
int x;
if (fork ret == 0) {
X = 5950;
} else {
x = 5930;
}
cout << x << endl;

fork ()

18

University of Pennsylvania

LO6: Processes (cont.) & Threads

CIT 5950, Spring 2023

Another fork () example

Parent Process (PID = X)

int x;

1f (fork ret == 0)
X = 5950;

} else {

- x = 5930;

}

cout << x << endl;

pid t fork ret = fork();

{

Child Process (PID =Y)

if
— X

X

}

fork ret

Always prints "5930"

pid t fork ret = fork();
int x;

(fork ret == 0) ({
= 5950;

} else {

= 5930;

cout << x << endl;

fork ()

fork ret = 0

Always prints "5950"

Rewminder: Processes have their own address space
(and thhus, copies of their own variables)

Order is still nondeterministicll

19

University of Pennsylvania

LO6: Processes (cont.) & Threads

fork () example

—ppid t fork ret = fork();

if (fork ret == 0) {
printf ("I'm Child\n");
} else {

printf ("Hello!\n");
printf ("I'm Parent\n");

CIT 5950, Spring 2023

20

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

fork () example

Parent Process (PID = X) Child Process (PID =Y)
—Lpid_t fork ret = fork(); =P | pid t fork ret = fork();
if (fork ret == 0) ({ if (fork ret == 0) {
printf("I'm Child\n"); printf("I'm Child\n"):;

} else { } else {
printf ("Hello!\n"); printf ("Hello!\n") ;
printf("I'm Parent\n"); printf ("I'm Parent\n");
} }
fork ()

21

University of Pennsylvania

fork () example

Parent Process (PID = X)

LO6: Processes (cont.) & Threads

pid t fork ret = fork();

if (fork ret == 0) {
printf ("I'm Child\n");
} else {

printf ("Hello!\n");
printf ("I'm Parent\n");

}

Parent process prints:
"Hello!”

and

"I'm Parent"

Child Process (PID =Y)

CIT 5950, Spring 2023

pid t fork ret = fork():;
1f (fork ret == 0) {
printf ("I'm Child\n");
} else {
printf ("Hello!\n");
printf ("I'm Parent\n");
}

fork ()
Child process prints:

"I’'m Child"

What is the ordering of printing?

Non-deterministic

University of Pennsylvania

LO6: Processes (cont.) & Threads

fork () example

Parent Process (PID = X)

Child Process (PID =Y)

CIT 5950, Spring 2023

pid_t fork_ret = fork(); pid t fork ret = fork();
1f (fork ret == 0) { - 1f (fork ret == 0) {
printf ("I'm Child\n"); printf ("I'm Child\n");
} else { } else {
printf ("Hello!\n"); printf ("Hello!\n");
printf("I'm Parent\n"); printf ("I'm Parent\n");
} }
Fork () Can context switch

What are the possible ordering of outputs? +o ¢child at ANY time

1. 2. 3. Within a process, must
"Hello!" "Hello!" I'm Child™ 1 follow segquential logjic.

"I'm Parent" | | "I'm Child" "Hello!" (6\@\, "Hello" MUST be

"I'm Child" "I'm Parent" | | "I'm Parent"” printed before "I'm

parent”)

23

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

- Are the following outputs p055|ble?

(pid_t fork_ret = fork(); Sequence 1: Sequence 2:
1f (fork ret == 0) { Hi 1 Hi 3
fork ret = fork(); -

if (fork ret == 0) { B¥e Hl !
cout << "Hi 3!" << endl; Hi 2 Hi 2
} else { Bye Bye
cout << "Hi 2!" << endl; Bye Bye
} Hi 3 Bye
} else {
cout << "Hi1i 1!" << endl;
}
cout << "Bye" << endl; l\'
B. No Yes
Hint 1: there are three processes
| . , C. Yes No
Hint 2 Bach prints ont twice
" ~l// ﬁV]d //E\/ie// D. Yes Yes

E. We're lost...

24

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

- Are the following outputs p055|ble?

(pid_t fork_ret = fork(); Sequence 1: Sequence 2:
if (fork ret == 0) { Hi 1 Hi 3
fork ret = fork(); -

if (fork ret == 0) { Bye Hi 1
cout << "H1 3!" << endl; Hi 2 Hi 2
} else { Bye int+#, Bye
cout << "Hi 2!" << endl; Bye “1]j2” Bye
} Hi 3| yusthe Bye
Joelse | | before a “Bye”
cout << "Hi 1!" << endl;
}
cout << "Bye" << endl; A.
B. Yes
Hint 1: there are three processes
. . , C. Yes No
Hint 2 Bach prints ont twice
" ~l// ﬁV]d //E\/ie// D. Yes Yes

Hint 21 Events withiv a single process ,
are “ordered normally” E. We're lost... 25

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

- Are the following outputs p055|ble?

(pid_t fork_ret = fork(); Sequence 1: Sequence 2:
if (fork ret == 0) { Hi 1 Hi 3 OK
fork ret = fork(); . RY
if (fork ret == 0) { Bye Hi 1 Each “hi
cout << "H1 3!" << endl; Hi 2 Hi 2 comes
} else { Bye Bye before a
cout << "Hi 2!" << endl; Bye Bye ‘bye”
} Hi 3 Bye
} else { Order
cout << "Hi 1!" << endl; ALY 6SS
} rocesses
cout << "Bye" << endl; A' E(ﬂ’
4 No Yes auaranteed
mt 1: there are three processes
. . , C. Yes No
Hint 2 Bach prints ont twice
“Hi” and “Bye” D. Yes Yes

Hint 21 Events withiv a single process ,
are “ordered normally” E. We're lost... ’e

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Waiting on a child Process

+ |pld t waitpid(pid t pid, 1nt *wstatus,
int options);

= Calling process waits for a child process (specified by pid) to exit
- Also cleans up the child process

= Gets the exit status of child process through output parameter
wstatus

= options are optional, passin O for default options in most
cases

= Returns process ID of child who was waited for or =1 on error

¢ |p1d t wait(int *wstatus);

= Equivalent of waitpid, but waits for ANY child

27

CIT 5950, Spring 2023

University of Pennsylvania LO6: Processes (cont.) & Threads

sleep ()

o0

» |unsigned int sleep (unsigned i1nt seconds);

® Causes the calling thread to sleep until the number of real-time

seconds specified elapses

- (we will get to threads, for now think of it as acting on the calling
process)

- Can return early if it MUST be wakened up

- Returns the number of seconds left to sleep
— (0 if slept for specified time)

= Useful as a brute-force way to “synchronize” things.
Similar functions exist in most languages

28

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Demo: fork example

+ See fork example.cc

" Brief code demo to see the various states of a process
« Running
- Zombie
- Terminated

" Makesuseof sleep(),waitpid() andexit ()!

29

University of Pennsylvania

Lecture Outline

+ Review of Processes

J
>

+ Interleavings
+» Wait & Sleep
+» Threads

« pthreads

LO6: Processes (cont.) & Threads

CIT 5950, Spring 2023

30

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Introducing Threads

+ Separate the concept of a process from the “thread of
execution”

" Threads are contained within a process

= Usually called a thread, this is a sequential execution stream
within a process

— thread

« In most modern OS’s:

" Threads are the unit of scheduling.

31

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

" A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

32

University of Pennsylvania

LO6: Processes (cont.) & Threads

Threads vs. Processes

OS kernel [protected]

Stack

parent

!

I

Shared Libraries

I

fork ()

CIT 5950, Spring 2023

OS kernel [protected]

OS kernel [protected]

Stack

parent

Stack g

!

I

!

I

Shared Libraries

Shared Libraries

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

A 4

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

33

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Threads vs. Processes

pthread create()

34

University of Pennsylvania L06: Processes (cont.) & Threads CIT 5950, Spring 2023

Threads

+» Threads are like lightweight processes
" They execute concurrently like processes
- Multiple threads can run simultaneously on multiple CPUs/cores

= Unlike processes, threads cohabitate the same address space

- Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

— But, they can interfere with each other — need synchronization for shared
resources

- Each thread has its own stack

+» Analogy: restaurant kitchen
= Kitchen is process
" Chefs are threads

35

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Single-Threaded Address Spaces

_ +~ Before creating a thread

Stack

S e = fafe"t " One thread of execution running
in the address space
- One PC, stack, SP
t " That main thread invokes a
Shared Libraries function to create a new thread
t - Typically pthread create ()

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
5 —n .text, .rodata

pakent

36

CIT 5950, Spring 2023

University of Pennsylvania

LO6: Processes (cont.) & Threads

Multi-threaded Address Spaces

_ + After creating a thread

Stack

parent

SP

pakent

|

Stack 4

Py =

!
I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Pty =

pakent

Read-Only Segments
.text, .rodata

" Two threads of execution running
in the address space

« Original thread (parent) and new
thread (child)

- New stack created for child thread

« Child thread has its own values of
the PC and SP

= Both threads share the other
segments (code, heap, globals)

- They can cooperatively modify
shared data

37

University of Pennsylvania

Lecture Outline

+ Review of Processes
« OS as a scheduler

+ Threads
+ pthreads

LO6: Processes (cont.) & Threads

CIT 5950, Spring 2023

38

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

POSIX Threads (pthreads)

+» The POSIX APIs for dealing with threads

" Declaredinpthread.h
« Not part of the C/C++ language

" To enable support for multithreading, must include —-pthread
flag when compiling and linking with gcc command

-« gcc —g —-Wall —-std=cll —-pthread -0 main mailn.c

" Implemented in C

- Must deal with C programming practices and style

39

University of Pennsylvania L06: Processes (cont.) & Threads CIT 5950, Spring 2023

Creating and Terminating Threads

Output parameter.
aives us a “thread descriptor”

e [int pthread create (/ |
pthread t* thread, Fumction pointer!

const pthread attr t* attr, Takes & returus vold*
void* (*start routine) (void*) / to allow “generics” in C

vo1d* arqg) ;e Argument for the thread functioy

\

= Creates a new thread into *thread, with attributes *attr
(NULT means default attributes)

= Returns 0 on success and an error number on error (can check
against error constants) &' start_routine

" The new thread runs start routine (arg)

continune

»

»

pthread_create parent

40

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);]

" Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is placgd in **retval
Parent thread waits for child fart_rotttine

\@
+hread +o exit, gets the child’s / \ continues

return value, and child +hread is
; create parent join
cleaned up

41

University of Pennsylvania LO6: Processes (cont.) & Threads CIT 5950, Spring 2023

Thread Example

« See cthreads.c

" How do you properly handle memory management?
« Who allocates and deallocates memory?
- How long do you want memory to stick around?

42

	Default Section
	Slide 1: Processes (Cont.) & Threads Computer Systems Programming, Spring 2023
	Slide 2: Logistics
	Slide 3: Lecture Outline
	Slide 4: Definition: Process
	Slide 5: OS: Protection System
	Slide 6: Creating New Processes
	Slide 7: fork() and Address Spaces
	Slide 8: fork()
	Slide 9: fork()
	Slide 10: fork()
	Slide 11: Terminating Processes
	Slide 12: "simple" fork() example
	Slide 13: "simple" fork() example
	Slide 14: Process States
	Slide 15: OS: The Scheduler
	Slide 16: Scheduler Considerations
	Slide 17: Another fork() example
	Slide 18: Another fork() example
	Slide 19: Another fork() example
	Slide 20: fork() example
	Slide 21: fork() example
	Slide 22: fork() example
	Slide 23: fork() example
	Slide 24: Polling Question
	Slide 25: Polling Question
	Slide 26: Polling Question
	Slide 27: Waiting on a child Process
	Slide 28: sleep()
	Slide 29: Demo: fork_example
	Slide 30: Lecture Outline
	Slide 31: Introducing Threads
	Slide 32: Threads vs. Processes
	Slide 33: Threads vs. Processes
	Slide 34: Threads vs. Processes
	Slide 35: Threads
	Slide 36: Single-Threaded Address Spaces
	Slide 37: Multi-threaded Address Spaces
	Slide 38: Lecture Outline
	Slide 39: POSIX Threads (pthreads)
	Slide 40: Creating and Terminating Threads
	Slide 41: What To Do After Forking Threads?
	Slide 42: Thread Example

