
CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Processes (Cont.) & Threads
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Logistics

❖ HW1 (FileReaders) Due Thursday 2/9 @ 11:59 pm

▪ Released, autograder coming out later TODAY

▪ You should have everything you need to complete the assignment

▪ Recitation last week gave helpful practice with writing POSIX code

2

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Review of Processes

❖ Interleaving & Scheduling

❖ wait & sleep

❖ Threads

❖ pthreads

3

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

4

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

5

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the
parent

6

pid_t fork();

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

7

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

8

parent

OS

fork()

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

9

parent child

OS

clone

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

10

parent child

OS

child pid 0

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Terminating Processes

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status)

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an
integer value from the main routine

❖ exit is called once but never returns.

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

"simple" fork() example

12

fork();

cout << "Hello!\n";

exit(EXIT_SUCCESS);

Prints "Hello!\n" twice, once from each process

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

"simple" fork() example

13

int x = 3;

fork();

x++;

cout << x << endl;

exit(EXIT_SUCCESS);

Prints "4\n" twice, once from each process.

Each process has separate memory, and thus

their own independent copy of X

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Process States

From a programmer’s perspective, we can think of a
process as being in one of three states

❖ Running

▪ Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

❖ Stopped

▪ Process execution is suspended and will not be scheduled
until further notice (next lecture when we study signals)

❖ Terminated
▪ Process is stopped permanently

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will some
kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling other processes

▪ Choosing which one to run

▪ Deciding how long to run it

15

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide what
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of
time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more…

❖ More on this later. For now: think of scheduling as non-
deterministic, details handled by the OS. 16

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Another fork() example

17

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Another fork() example

18

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Another fork() example

19

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 5950;

} else {

x = 5930;

}

cout << x << endl;

fork_ret = Y fork_ret = 0

Always prints "5930" Always prints "5950"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

fork() example

20

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("I'm Child\n");

} else {

printf("Hello!\n");

printf("I'm Parent\n");

}

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("I'm Child\n");

} else {

printf("Hello!\n");

printf("I'm Parent\n");

}

fork() example

21

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("I'm Child\n");

} else {

printf("Hello!\n");

printf("I'm Parent\n");

}

fork()

Parent Process (PID = X) Child Process (PID = Y)

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("I'm Child\n");

} else {

printf("Hello!\n");

printf("I'm Parent\n");

}

fork() example

22

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("I'm Child\n");

} else {

printf("Hello!\n");

printf("I'm Parent\n");

}

fork()

Parent Process (PID = X) Child Process (PID = Y)

Parent process prints:
"Hello!“
and
"I’m Parent"

Child process prints:
"I’m Child"

What is the ordering of printing?

Non-deterministic

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("I'm Child\n");

} else {

printf("Hello!\n");

printf("I'm Parent\n");

}

fork() example

23

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("I'm Child\n");

} else {

printf("Hello!\n");

printf("I'm Parent\n");

}

fork()

Parent Process (PID = X) Child Process (PID = Y)

What are the possible ordering of outputs?

1.
"Hello!"
"I'm Parent"
"I'm Child"

2.
"Hello!"
"I'm Child"
"I'm Parent"

3.
"I'm Child"
"Hello!"
"I'm Parent"

Can context switch

to child at ANY time

Within a process, must

follow sequential logic.

(e.g., "Hello" MUST be

printed before "I’m

parent“)

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Polling Question

❖ Are the following outputs possible?

24

pollev.com/tqm

pid_t fork_ret = fork();

if (fork_ret == 0) {

fork_ret = fork();

if (fork_ret == 0) {

cout << "Hi 3!" << endl;

} else {

cout << "Hi 2!" << endl;

}

} else {

cout << "Hi 1!" << endl;

}

cout << "Bye" << endl;
A. No No

B. No Yes

C. Yes No

D. Yes Yes

E. We’re lost…

Sequence 1:
Hi 1

Bye

Hi 2

Bye

Bye

Hi 3

Sequence 2:
Hi 3

Hi 1

Hi 2

Bye

Bye

Bye

Hint 1: there are three processes

Hint 2: Each prints out twice

“Hi” and “Bye”

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Polling Question

❖ Are the following outputs possible?

25

pollev.com/tqm

pid_t fork_ret = fork();

if (fork_ret == 0) {

fork_ret = fork();

if (fork_ret == 0) {

cout << "Hi 3!" << endl;

} else {

cout << "Hi 2!" << endl;

}

} else {

cout << "Hi 1!" << endl;

}

cout << "Bye" << endl;
A. No No

B. No Yes

C. Yes No

D. Yes Yes

E. We’re lost…

Sequence 1:
Hi 1

Bye

Hi 2

Bye

Bye

Hi 3

Sequence 2:
Hi 3

Hi 1

Hi 2

Bye

Bye

Bye

Hint 1: there are three processes

Hint 2: Each prints out twice

“Hi” and “Bye”

Hint 3: Events within a single process

are “ordered normally”

Hint #2

“Hi 3”

must be

before a “Bye”

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Polling Question

❖ Are the following outputs possible?

26

pollev.com/tqm

pid_t fork_ret = fork();

if (fork_ret == 0) {

fork_ret = fork();

if (fork_ret == 0) {

cout << "Hi 3!" << endl;

} else {

cout << "Hi 2!" << endl;

}

} else {

cout << "Hi 1!" << endl;

}

cout << "Bye" << endl;
A. No No

B. No Yes

C. Yes No

D. Yes Yes

E. We’re lost…

Sequence 1:
Hi 1

Bye

Hi 2

Bye

Bye

Hi 3

Sequence 2:
Hi 3

Hi 1

Hi 2

Bye

Bye

Bye

Hint 1: there are three processes

Hint 2: Each prints out twice

“Hi” and “Bye”

Hint 3: Events within a single process

are “ordered normally”

OK

Each “hi”

comes

before a

“bye”

Order

across

processes

not

guaranteed

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Waiting on a child Process

❖

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter
wstatus

▪ options are optional, pass in 0 for default options in most
cases

▪ Returns process ID of child who was waited for or -1 on error

❖ Wait

▪ Equivalent of waitpid, but waits for ANY child

27

pid_t waitpid(pid_t pid, int *wstatus,

int options);

pid_t wait(int *wstatus);

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

sleep()

❖ Sleep

▪ Causes the calling thread to sleep until the number of real-time
seconds specified elapses

• (we will get to threads, for now think of it as acting on the calling
process)

• Can return early if it MUST be wakened up

• Returns the number of seconds left to sleep

– (0 if slept for specified time)

▪ Useful as a brute-force way to “synchronize” things.
Similar functions exist in most languages

28

unsigned int sleep(unsigned int seconds);

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Demo: fork_example

❖ See fork_example.cc

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), waitpid() and exit()!

29

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Review of Processes

❖ Interleavings

❖ Wait & Sleep

❖ Threads

❖ pthreads

30

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Introducing Threads

❖ Separate the concept of a process from the “thread of
execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream
within a process

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.

31

thread

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
& security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
& registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

32

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Threads vs. Processes

33

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Threads vs. Processes

34

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Threads

❖ Threads are like lightweight processes

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared
resources

• Each thread has its own stack

❖ Analogy: restaurant kitchen

▪ Kitchen is process

▪ Chefs are threads

35

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Single-Threaded Address Spaces

❖ Before creating a thread

▪ One thread of execution running
in the address space

• One PC, stack, SP

▪ That main thread invokes a
function to create a new thread

• Typically pthread_create()

36

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Multi-threaded Address Spaces

❖ After creating a thread

▪ Two threads of execution running
in the address space

• Original thread (parent) and new
thread (child)

• New stack created for child thread

• Child thread has its own values of
the PC and SP

▪ Both threads share the other
segments (code, heap, globals)

• They can cooperatively modify
shared data

37

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SPparent

PCparent

Stackchild
SPchild

PCchild

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Review of Processes

❖ OS as a scheduler

❖ Threads

❖ pthreads

38

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads
▪ Declared in pthread.h

• Not part of the C/C++ language

▪ To enable support for multithreading, must include -pthread
flag when compiling and linking with gcc command

• gcc –g –Wall –std=c11 –pthread –o main main.c

▪ Implemented in C

• Must deal with C programming practices and style

39

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

40

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

41

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

CIT 5950, Spring 2023L06: Processes (cont.) & ThreadsUniversity of Pennsylvania

Thread Example

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

42

	Default Section
	Slide 1: Processes (Cont.) & Threads Computer Systems Programming, Spring 2023
	Slide 2: Logistics
	Slide 3: Lecture Outline
	Slide 4: Definition: Process
	Slide 5: OS: Protection System
	Slide 6: Creating New Processes
	Slide 7: fork() and Address Spaces
	Slide 8: fork()
	Slide 9: fork()
	Slide 10: fork()
	Slide 11: Terminating Processes
	Slide 12: "simple" fork() example
	Slide 13: "simple" fork() example
	Slide 14: Process States
	Slide 15: OS: The Scheduler
	Slide 16: Scheduler Considerations
	Slide 17: Another fork() example
	Slide 18: Another fork() example
	Slide 19: Another fork() example
	Slide 20: fork() example
	Slide 21: fork() example
	Slide 22: fork() example
	Slide 23: fork() example
	Slide 24: Polling Question
	Slide 25: Polling Question
	Slide 26: Polling Question
	Slide 27: Waiting on a child Process
	Slide 28: sleep()
	Slide 29: Demo: fork_example
	Slide 30: Lecture Outline
	Slide 31: Introducing Threads
	Slide 32: Threads vs. Processes
	Slide 33: Threads vs. Processes
	Slide 34: Threads vs. Processes
	Slide 35: Threads
	Slide 36: Single-Threaded Address Spaces
	Slide 37: Multi-threaded Address Spaces
	Slide 38: Lecture Outline
	Slide 39: POSIX Threads (pthreads)
	Slide 40: Creating and Terminating Threads
	Slide 41: What To Do After Forking Threads?
	Slide 42: Thread Example

