
CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Threads
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Upcoming Due Dates

❖ HW1 (FileReaders) Due Tomorrow

▪ Get started if you haven’t already!!!!

▪ Should have everything you need to complete the assignment

❖ HW2 (Threads)

▪ To be released soon HW1

2

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Why threads?

❖ pthreads review

❖ Shared resources & data races

❖ Locks & mutexes

3

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

4

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Search Engine Architecture

5

query
processor

client
index

file

index
file

index
file

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Search Engine (Pseudocode)

6

doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

Disk I/O

Network

I/O

Network

I/O

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Execution Timeline: a Multi-Word Query

7

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

d
i
s
k

I
/
O

L
o
o
k
u
p
(
)

n
e
t
w
o
r
k

I
/
O

D
i
s
p
l
a
y
(
)

G
e
t
N
e
x
t
Q
u
e
r
y
(
)

• • •

time

query

C
P
U

C
P
U

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

r
e
s
u
l
t
s
.
i
n
t
e
r
s
e
c
t
(
)

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

8

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Execution Timeline: To Scale

9

n
e
t
w
o
r
k

I
/
O

m
a
i
n
(
)

d
i
s
k

I
/
O

d
i
s
k

I
/
O

d
i
s
k

I
/
O

• • •

time

query

n
e
t
w
o
r
k

I
/
O

C
P
U

C
P
U

Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Multiple (Single-Word) Queries

10

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

time

query 2

query 3

query 1

is the Query Number
#.a -> GetNextQuery()
#.b -> network I/O
#.c -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()
#.f -> Display()

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Uh-Oh (1 of 2)

11

query
processor

client

client

client

client

client

index
file

index
file

index
file

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Uh-Oh (2 of 2)

12

time

query 2

query 3

query 1

The CPU is idle most
of the time!

(picture not to scale)

Only one I/O request at
a time is “in flight”

Queries don’t run until
earlier queries finish

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

I
/
O

2
.
f

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

I
/
O

3
.
f

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

I
/
O

1
.
f

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

13

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

A Concurrent Implementation

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

14

Threads!!!!

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Multithreaded Server

15

client

server

accept()

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Multithreaded Server

16

client

server

pthread_create()

pthread_detach()

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Multithreaded Server

17

client

server

accept()

client

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Multithreaded Server

18

client

client

server

pthread_create()

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Multithreaded Server

19

client

client

client

client

client

client
server

shared
data

structures

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Multi-threaded Search Engine (Execution)

20

C
P
U

1
.
a

I
/
O

1
.
b

C
P
U

1
.
c

I
/
O

1
.
d

C
P
U

1
.
e

C
P
U

2
.
a

I
/
O

2
.
b

C
P
U

3
.
a

I
/
O

3
.
b

C
P
U

3
.
c

I
/
O

3
.
d

C
P
U

3
.
e

time

query 2

query 3

query 1

C
P
U

2
.
c

I
/
O

2
.
d

C
P
U

2
.
e

*Running with 1 CPU

Note how only one thread

uses any specific resource

at a time

The OS schedules all of

this for us ☺

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

21

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique: address space, OS resources,
& security attributes

▪ A Thread has a unique: stack, stack pointer, program counter,
& registers

▪ Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

22

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Threads vs. Processes

23

OS kernel [protected]

Stackchild

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

fork()

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Threads vs. Processes

24

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

pthread_create()

Stackchild

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context
switching

▪ Cannot easily share memory between processes – typically
communicate through the file system

25

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

❖ If I wanted to make a web browser, what concurrency
model should I use?

▪ Note that a web browser may need to request many resources
over the network and combine them together to load a page

26

A. Do it sequentially
B. Use threads
C. Use processes
D. We’re lost…

pollev.com/tqm

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

❖ If I wanted to make a web browser, what concurrency
model should I use?

▪ Note that a web browser may need to request many resources
over the network and combine them together to load a page

27

A. Do it sequentially
B. Use threads
C. Use processes
D. We’re lost…

Concurrency will make more efficient use

of time

We will need to share the data we

request across “workers”

We want to be fast

pollev.com/tqm

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Why threads?

❖ pthreads review

❖ Shared resources & data races

❖ Locks & mutexes

28

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check
against error constants)

▪ The new thread runs start_routine(arg)

❖

▪ Equivalent of exit(retval); for a thread instead of a process

▪ The thread will automatically exit once it returns from
start_routine()

29

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*),

void* arg);

void pthread_exit(void* retval);

Output parameter.

Gives us a “thread_descriptor”

Function pointer!

Takes & returns void*

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

❖

▪ Mark thread specified by thread as detached – it will clean up
its resources as soon as it terminates

30

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child

thread to exit, gets the child’s

return value, and child thread is

cleaned up

start_routine

continues

parentcreate join

Detach a thread.

Thread is cleaned up when it is

finished

continues

parentcreate detach

start_routine
x

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Thread Examples

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

❖ See exit_thread.cc

▪ Do we need to join every thread we create?

❖ See ccthreads.cc

▪ Rewriting cthreads.c, but in C++

31

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Why threads?

❖ pthreads review

❖ Shared resources & data races

❖ Locks & mutexes

32

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Shared Resources

❖ Some resources are shared between threads and
processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

33

Issues arise when we

try to shared things

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Data Races

❖ Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

▪ Means that the result of a program can vary depending on chance
(which thread ran first?)

34

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Data Race Example

❖ If your fridge has no milk,
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

35

if (!milk) {

buy milk

}

! !

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

36

if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

pollev.com/tqm

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

37

if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other

possible scenarios

that result in

multiple milks

We can be interrupted

between checking note and

leaving note 

pollev.com/tqm

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

❖ Example: two threads try to read from and write to the
same shared memory location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head
of the linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
38

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Lecture Outline

❖ Why threads?

❖ pthreads review

❖ Shared resources & data races

❖ Locks & mutexes

39

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

40

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

41

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

Milk Example – What is the Critical Section?

❖ What if we use a lock on the
refrigerator?

▪ Probably overkill – what if
roommate wanted to get eggs?

❖ For performance reasons, only
put what is necessary in the
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

42

fridge.lock()

if (!milk) {

buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

buy milk

}

milk_lock.unlock()

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

43

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIT 5950, Spring 2023L07: ThreadsUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.cc

▪ Data race between threads

❖ See total_locking.cc

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code
and to total?

▪ Likely slower than both– only 1 thread can increment at a time,
and must deal with checking the lock and switching between
threads

▪ One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

• See total_locking_better.cc
44

	Default Section
	Slide 1: Threads Computer Systems Programming, Spring 2023
	Slide 2: Upcoming Due Dates
	Slide 3: Lecture Outline
	Slide 4: Building a Web Search Engine
	Slide 5: Search Engine Architecture
	Slide 6: Search Engine (Pseudocode)
	Slide 7: Execution Timeline: a Multi-Word Query
	Slide 8: What About I/O-caused Latency?
	Slide 9: Execution Timeline: To Scale
	Slide 10: Multiple (Single-Word) Queries
	Slide 11: Uh-Oh (1 of 2)
	Slide 12: Uh-Oh (2 of 2)
	Slide 13: Sequential Can Be Inefficient
	Slide 14: A Concurrent Implementation
	Slide 15: Multithreaded Server
	Slide 16: Multithreaded Server
	Slide 17: Multithreaded Server
	Slide 18: Multithreaded Server
	Slide 19: Multithreaded Server
	Slide 20: Multi-threaded Search Engine (Execution)
	Slide 21: Why Threads?
	Slide 22: Threads vs. Processes
	Slide 23: Threads vs. Processes
	Slide 24: Threads vs. Processes
	Slide 25: Alternative: Processes
	Slide 26
	Slide 27
	Slide 28: Lecture Outline
	Slide 29: Creating and Terminating Threads
	Slide 30: What To Do After Forking Threads?
	Slide 31: Thread Examples
	Slide 32: Lecture Outline
	Slide 33: Shared Resources
	Slide 34: Data Races
	Slide 35: Data Race Example
	Slide 36: Data Race Example
	Slide 37: Data Race Example
	Slide 38: Threads and Data Races
	Slide 39: Lecture Outline
	Slide 40: Synchronization
	Slide 41: Lock Synchronization
	Slide 42: Milk Example – What is the Critical Section?
	Slide 43: pthreads and Locks
	Slide 44: pthread Mutex Examples

