University of Pennsylvania LO7: Threads

Threads

Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai
Mati Davis Donglun He
Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Upcoming Due Dates

» HW1 (FileReaders) Due Tomorrow
= Get started if you haven’t already!!!!

= Should have everything you need to complete the assignment

» HW2 (Threads)

" To be released soon HW1

University of Pennsylvania LO7: Threads

Lecture Outline

Why threads?
+ pthreads review

J
>

« Shared resources & data races
« Locks & mutexes

CIT 5950, Spring 2023

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Building a Web Search Engine

+ We have:

= A web index
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A query processor
-« Accepts a query composed of multiple words
- Looks up each word in the index
- Merges the result from each word into an overall result set

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Search Engine Architecture

index

file

index .

e —
file

index

file

University of Pennsylvania

LO7: Threads

Search Engine (Pseudocode)

CIT 5950, Spring 2023

(doclist Lookup (string word) {

bucket = hash (word);

hitlist = file.read (bucket); «—Disk T/O
foreach hit in hitlist { ’/’

doclist.append(file.read (hit));
}

return doclist;

}

main () {

SetupServerToReceiveConnections () ;
while (1) {

string query words[] = GetNextQuery (); +—Network

results = Lookup (query words[0]); T/O
foreach word in query[l..n] {
results =

results.intersect (Lookup (word)) ;

}

Display (results); «—Network

} } T/O

CIT 5950, Spring 2023

LO7: Threads

<
o=
=
[ay]
>
—
>
n
=
=
(&)
A
S~
(@)
>
+
o=
N
~
()
>
o=
5

[mm)

: @ Multi-Word Query

Execution Timeline

Avmumsmwwauww

O/I Iomjsu

() Aetdsta

Ndo

() 30®sa=L3uUuT - S]1TNsSaI

O/I STP

() dnyoor

Nndo

() 30®sa=L3uUuT " S]1TNsSaI

O/I ¥STP

() dnyjoorT

O/I ASTP

() dnyoor

O/I Iomisu

() Lxend3ixsN3I®o
() uteu

query

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

What About I/O-caused Latency?

+ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

L1l cache reference OIS In'S
Branch mispredict Sllints
L2 cache reference 7 ns
Mutex lock/unlock LI gl
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory i VR (010 o=
Round trip within same datacenter S ORORINnts
Disk seek 1L0) - (000 - @00 @E
= Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA ILS(0) 4 @005 OX0) S +
Google -

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Execution Timeline: To Scale

Model isw't perfect:
Techmically also some cpu usane to setup I/O.
Network output also (probably) won't block program

O O
g NG
@) O @)
= < NG NG =
o - — — N
Y G oo o
i i iV
(3) 0 0 0 CB)
5 — - — 5
% e S T -
— - <
o
o
(v}
&
______________________________ >
time
|‘ query

\\\\\

CIT 5950, Spring 2023

University of Pennsylvania LO7: Threads

Multiple (Single-Word) Queries

is the Query Number

#.a-> GetNextQuery ()

#.b -> network 1/0

#.c ->Lookup () & file.read()
#.d -> Disk I/O
#H.e->Intersect ()
#f->Display ()

query 1

query 3

10

University of Pennsylvania

LO7: Threads

CIT 5950, Spring 2023

Uh-Oh (1 of 2)

index
file

index
file

index
file

\.
/

query

processor

client

client

client

client

client

11

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Uh-Oh (2 of 2)

Only one I/O request at
The CPU is idle most a time is “in flight”

of the time! /

(picture not to scale)

Queries don’t run until
earlier queries finish

query 1

12

CIT 5950, Spring 2023

University of Pennsylvania LO7: Threads

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one
= And clients queue up behind the queries ...

*

+» Even while processing one query, the CPU is idle the vast
majority of the time

" |t is blocked waiting for /O to complete
« Disk I/O can be very, very slow (10 million times slower ...)

L)

+» At most one I/O operation is in flight at a time

= Missed opportunities to speed I/O up
- Separate devices in parallel, better scheduling of a single device, etc.

13

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

A Concurrent Implementation

+» Use multiple “workers”

= As a query arrives, create a new “worker” to handle it

- The “worker” reads the query from the network, issues read requests
against files, assembles results and writes to the network

- The “worker” uses blocking I/0; the “worker” alternates between
consuming CPU cycles and blocking on I/O

® The OS context switches between “workers”
« While one is blocked on I/O, another can use the CPU
- Multiple “workers’ 1/0O requests can be issued at once

« So what should we use for our “workers”?
Threadslll

14

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Multithreaded Server

server

15

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Multithreaded Server

) pthread create ()
7’

m % ~xf)thread_detach ()

server

16

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Multithreaded Server

server

17

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Multithreaded Server

N
/\ pthread create()

server

18

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Multithreaded Server

shared

data
structures

server

19

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Multi-threaded Search Engine (Execution)
Ruwvming with 1 CPU

query 2

The OS schedules all of
this for us ©

query 1 Note how ouly one thread
uses any specific resource

at a time

20

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Why Threads?

+» Advantages:
" You (mostly) write sequential-looking code
" Threads can run in parallel if you have multiple CPUs/cores

+» Disadvantages:

<ylf threads share data, you need locks or other synchronization

- Very bug-prone and difficult to debug
® Threads can introduce overhead

- Lock contention, context switch overhead, and other issues

" Need language support for threads

21

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Threads vs. Processes

« In most modern OS’s:

= A Process has a unique: address space, OS resources,
& security attributes

" A Thread has a unique: stack, stack pointer, program counter,
& registers

" Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

22

University of Pennsylvania

LO7: Threads

Threads vs. Processes

OS kernel [protected]

Stack

parent

!

I

Shared Libraries

I

fork ()

A 4

CIT 5950, Spring 2023

OS kernel [protected]

OS kernel [protected]

Stack

parent

Stack 4

!

I

!

I

Shared Libraries

Shared Libraries

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

I

Heap (malloc/free)

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

Read-Only Segments
.text, .rodata

23

University of Pennsylvania

LO7: Threads

Threads vs. Processes

Stack

!

parent

I

Shared Libraries

pthread create()

CIT 5950, Spring 2023

Stack

|

Stack 4

]
f

Shared Libraries

parent

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

I

Heap (malloc/free)

Read/Write Segments
.data, .bss

Read-Only Segments
.text, .rodata

24

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Alternative: Processes

+» What if we forked processes instead of threads?

+» Advantages:
" No shared memory between processes
" No need for language support; OS provides “fork”
" Processes are isolated. If one crashes, other processes keep going

+» Disadvantages:

" More overhead than threads during creation and context
switching

= Cannot easily share memory between processes — typically
communicate through the file system

25

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

/

+ If | wanted to make a web browser, what concurrency
model should | use?

" Note that a web browser may need to request many resources
over the network and combine them together to load a page

A
B. Use threads
C

. Use processes
D. We'relost...

26

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

+ If | wanted to make a web browser, what concurrency
model should | use?

" Note that a web browser may need to request many resources
over the network and combine them together to load a page

Concurrency will make more efficient use

A. of time
Use threads we will need +o share the data we
C. Use processes request across “workers”

) 4
D. We're lost... We want +o be fast

27

University of Pennsylvania LO7: Threads

Lecture Outline

+» Why threads?

» pthreads review

+ Shared resources & data races
+ Locks & mutexes

CIT 5950, Spring 2023

28

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Creating and Terminating Threads

o0

&

.0

D)

Output parameter.
aives us a “thread descriptor”

(int pthread create (// |
pthread t* thread, Fumction pointer!

const pthread attr t* attr, Takes & returus vold*
volid¥* (*Start_routine)(void*)r//*b“MW"Wmmwgwmc

vo1d* arqg) ;e Argument for the thread functioy

\

= Creates a new thread into *thread, with attributes *attr
(NULT means default attributes)

= Returns 0 on success and an error number on error (can check
' Dy Start_routi
against error constants) & start_routine

continue
] - > >
The new thread runs start routine (arg) threod create parent

void pthread exit(void* retval);

" Equivalentof exit (retval) ; for athread instead of a process

" The thread will automatically exit once it returns from

start routine ()
— 29

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

What To Do After Forking Threads?

& [int pthread join(pthread t thread, void** retval);]

" Waits for the thread specified by thread to terminate
" The thread equivalent of waitpid ()

" The exit status of the terminated thread is placgg in ’;*retval

Parewt thread waits for child \@ T ron

thread +to exit, gets the child’s / \ continues

return value, and child thread is g
' arent

cleaned up cr@m@ P joiv

o [int pthread detach(pthread t thread);]

= Mark thread specified by thread as detached — it will clean up

its resources as soon as it terminates _
Start _rountive

Detach a thread. A > X
Thread is cleaned up whew it is D\&\/' continues
finished create Parewt detach

30

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Thread Examples

« See cthreads.c

" How do you properly handle memory management?
« Who allocates and deallocates memory?
- How long do you want memory to stick around?

+ Seeexit thread.cc

" Do we need to join every thread we create?

« See ccthreads.cc

= Rewriting cthreads.c, but in C++

31

University of Pennsylvania LO7: Threads

Lecture Outline

J
>

» Why threads?

» pthreads review

+ Shared resources & data races
+» Locks & mutexes

CIT 5950, Spring 2023

32

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Shared Resources

« Some resources are shared between threads and
processes

+» Thread Level:
" Memory
" Things shared by processes

<« Process |level Tssues arise when we
= 1/O devices try to shared things
- Files

- terminal input/output
- The network

33

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Data Races

+» Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

" Means that the result of a program can vary depending on chance
(which thread ran first?)

34

University of Pennsylvania

LO7: Threads

Data Race Example

+ If your fridge has no milk,

then go out and buy some more
" What could go wrong?

+ If you live alone:
®

M o

+ If you live with a roommate:

B

® .
B E i

7

CIT 5950, Spring 2023

if ('milk) {
buy milk
} _J
()

35

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

+ ldea: leave a note! 1f (!note) {
if ('milk) {

leave note
buy milk
remove note

" Does this fix the problem?

A.
}
B. No, could end up with no milk

C. No, could still buy multiple milk
D. We're lost...

36

University of Pennsylvania LO7: Threads

@ Poll Everywhere

CIT 5950, Spring 2023

pollev.com/tqm

+ ldea: leave a note!

" Does this fix the problem?

We can be interrupted
between checking vote and
leaving note ®

A.
B. No, could end up with no milk

(€ No, could still buy multiple milk
D. We're lost...

*There are other
possible scenarios
that result in
multiple milks

E
if

}

\

'note) {
('mi1lk) {
leave note
buy milk
remove note

you

Check note

Check mil

Leave note

Buy milk

roommate

Check vote
k

Check milk
Leave vote
Buy milk

R R

my

CIT 5950, Spring 2023

University of Pennsylvania LO7: Threads

Threads and Data Races

» Data races might interfere in painful, non-obvious ways,
depending on the specifics of the data structure

» Example: two threads try to read from and write to the
same shared memory location
" Could get “correct” answer
" Could accidentally read old value
" One thread’s work could get “lost”

» Example: two threads try to push an item onto the head
of the linked list at the same time
" Could get “correct” answer
" Could get different ordering of items
" Could break the data structure! 2 .

University of Pennsylvania LO7: Threads

Lecture Outline

Why threads?
+ pthreads review

J
>

« Shared resources & data races
+ Locks & mutexes

CIT 5950, Spring 2023

39

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Synchronization

+ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data
"= Need some mechanism to coordinate the threads

- “Let me go first, then you can go”

= Many different coordination mechanisms have been invented

&

+ Goals of synchronization:

D)

" Liveness — ability to execute in a timely manner
(informally, “something good eventually happens”)

= Safety —avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

40

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Lock Synchronization

+» Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

= Executed in an uninterruptible (i.e. atomic) manner

+ Pseudocode:

» Lock Acquire ' // non-critical code
= Wait until the lock is free, loop/idle
then take it lock.acquire () ;_/ iflocked

// critical section

lock.release () ;
« Lock Release

= Release the lock // non-critical code

\ S

= |f other threads are waiting, wake exactly one up to pass lock to

41

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

Milk Example — What is the Critical Section?

%+ What if we use a lock on the fridge.lock ()
refrigerator? 1t (Imilk)

" Probably overkill = what if buy milk

roommate wanted to get eggs?)
fridge.unlock ()

» For performance reasons, only l
put what is necessary in the
critical section
" Only lock the milk
= But lock all steps that must run }

uninterrupted (i.e. must run .
p. (. milk lock.unlock ()
as an atomic unit) —)

milk lock.lock ()
1t (Imilk) {
buy milk

42

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

pthreads and Locks

Another term for a lock is a mutex (“mutual exclusion”)
" pthread.h defines datatype pthread mutex t

L)

0’0

< | int pthread mutex init (pthread mutex t* mutex,
const pthread mutexattr t* attr);

>

" |nitializes a mutex with specified attributes

L)

>

(int pthread mutex lock (pthread mutex t* mutex); J

0

= Acquire the lock — blocks if already locked (w-blocks when lock is acquired

L)

0’0

(int pthread mutex unlock (pthread mutex t* mutex); J

® Releases the lock

D)

X (int pthread mutex destroy(pthread mutex t* mutex);)

*

" “Uninitializes” a mutex — clean up when done

43

University of Pennsylvania LO7: Threads CIT 5950, Spring 2023

pthread Mutex Examples

+ See total.cc

® Data race between threads

+ See total locking.cc

= Adding a mutex fixes our data race

+ Howdoes total locking compare to sequential code
andto total?
= Likely slower than both—only 1 thread can increment at a time,

and must deal with checking the lock and switching between
threads

" One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

- See total locking better.cc
44

	Default Section
	Slide 1: Threads Computer Systems Programming, Spring 2023
	Slide 2: Upcoming Due Dates
	Slide 3: Lecture Outline
	Slide 4: Building a Web Search Engine
	Slide 5: Search Engine Architecture
	Slide 6: Search Engine (Pseudocode)
	Slide 7: Execution Timeline: a Multi-Word Query
	Slide 8: What About I/O-caused Latency?
	Slide 9: Execution Timeline: To Scale
	Slide 10: Multiple (Single-Word) Queries
	Slide 11: Uh-Oh (1 of 2)
	Slide 12: Uh-Oh (2 of 2)
	Slide 13: Sequential Can Be Inefficient
	Slide 14: A Concurrent Implementation
	Slide 15: Multithreaded Server
	Slide 16: Multithreaded Server
	Slide 17: Multithreaded Server
	Slide 18: Multithreaded Server
	Slide 19: Multithreaded Server
	Slide 20: Multi-threaded Search Engine (Execution)
	Slide 21: Why Threads?
	Slide 22: Threads vs. Processes
	Slide 23: Threads vs. Processes
	Slide 24: Threads vs. Processes
	Slide 25: Alternative: Processes
	Slide 26
	Slide 27
	Slide 28: Lecture Outline
	Slide 29: Creating and Terminating Threads
	Slide 30: What To Do After Forking Threads?
	Slide 31: Thread Examples
	Slide 32: Lecture Outline
	Slide 33: Shared Resources
	Slide 34: Data Races
	Slide 35: Data Race Example
	Slide 36: Data Race Example
	Slide 37: Data Race Example
	Slide 38: Threads and Data Races
	Slide 39: Lecture Outline
	Slide 40: Synchronization
	Slide 41: Lock Synchronization
	Slide 42: Milk Example – What is the Critical Section?
	Slide 43: pthreads and Locks
	Slide 44: pthread Mutex Examples

