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Upcoming Due Dates

❖ HW1 (FileReaders) Due Tomorrow

▪ Get started if you haven’t already!!!!

▪ Should have everything you need to complete the assignment

❖ HW2 (Threads)

▪ To be released soon HW1
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Lecture Outline

❖ Why threads?

❖ pthreads review

❖ Shared resources & data races

❖ Locks & mutexes
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Building a Web Search Engine

❖ We have:

▪ A web index

• A map from <word> to <list of documents containing the word>

• This is probably sharded over multiple files

▪ A query processor

• Accepts a query composed of multiple words

• Looks up each word in the index

• Merges the result from each word into an overall result set

4
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Search Engine Architecture
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Search Engine (Pseudocode)
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doclist Lookup(string word) {

bucket = hash(word);

hitlist = file.read(bucket);

foreach hit in hitlist {

doclist.append(file.read(hit));

}

return doclist;

}

main() {

SetupServerToReceiveConnections();

while (1) {

string query_words[] = GetNextQuery();

results = Lookup(query_words[0]);

foreach word in query[1..n] {

results = results.intersect(Lookup(word));

}

Display(results);

}

}

Disk I/O

Network 

I/O

Network 

I/O
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Execution Timeline: a Multi-Word Query
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What About I/O-caused Latency?

❖ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)
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Execution Timeline: To Scale
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Model isn’t perfect:

Technically also some cpu usage to setup I/O.

Network output also (probably) won’t block program …..
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Multiple (Single-Word) Queries
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#.a -> GetNextQuery()
#.b -> network I/O
#.c  -> Lookup() & file.read()
#.d -> Disk I/O
#.e -> Intersect()
#.f -> Display()
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Uh-Oh (1 of 2)
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Uh-Oh (2 of 2)
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The CPU is idle most 
of the time!

(picture not to scale)

Only one I/O request at 
a time is “in flight”

Queries don’t run until 
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Sequential Can Be Inefficient

❖ Only one query is being processed at a time

▪ All other queries queue up behind the first one

▪ And clients queue up behind the queries …

❖ Even while processing one query, the CPU is idle the vast 
majority of the time

▪ It is blocked waiting for I/O to complete

• Disk I/O can be very, very slow (10 million times slower …)

❖ At most one I/O operation is in flight at a time

▪ Missed opportunities to speed I/O up

• Separate devices in parallel, better scheduling of a single device, etc.

13
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A Concurrent Implementation 

❖ Use multiple “workers”

▪ As a query arrives, create a new “worker” to handle it

• The “worker” reads the query from the network, issues read requests 
against files, assembles results and writes to the network

• The “worker” uses blocking I/O; the “worker” alternates between 
consuming CPU cycles and blocking on I/O

▪ The OS context switches between “workers”

• While one is blocked on I/O, another can use the CPU

• Multiple “workers’” I/O requests can be issued at once

❖ So what should we use for our “workers”?

14

Threads!!!!
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Multithreaded Server
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Multithreaded Server
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pthread_create()
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Multithreaded Server
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Multithreaded Server
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Multithreaded Server
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Multi-threaded Search Engine (Execution)
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Why Threads?

❖ Advantages:

▪ You (mostly) write sequential-looking code

▪ Threads can run in parallel if you have multiple CPUs/cores

❖ Disadvantages:

▪ If threads share data, you need locks or other synchronization

• Very bug-prone and difficult to debug

▪ Threads can introduce overhead

• Lock contention, context switch overhead, and other issues

▪ Need language support for threads

21
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Threads vs. Processes

❖ In most modern OS’s:

▪ A Process has a unique:  address space, OS resources, 
& security attributes

▪ A Thread has a unique:  stack, stack pointer, program counter,
& registers

▪ Threads are the unit of scheduling and processes are their 
containers; every process has at least one thread running in it

22
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Threads vs. Processes

23
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Threads vs. Processes
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Alternative: Processes

❖ What if we forked processes instead of threads?

❖ Advantages:

▪ No shared memory between processes

▪ No need for language support; OS provides “fork”

▪ Processes are isolated. If one crashes, other processes keep going

❖ Disadvantages:

▪ More overhead than threads during creation and context 
switching

▪ Cannot easily share memory between processes – typically 
communicate through the file system

25
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❖ If I wanted to make a web browser, what concurrency 
model should I use?

▪ Note that a web browser may need to request many resources 
over the network and combine them together to load a page

26

A. Do it sequentially
B. Use threads
C. Use processes
D. We’re lost…

pollev.com/tqm
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❖ If I wanted to make a web browser, what concurrency 
model should I use?

▪ Note that a web browser may need to request many resources 
over the network and combine them together to load a page
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A. Do it sequentially
B. Use threads
C. Use processes
D. We’re lost…

Concurrency will make more efficient use 

of time

We will need to share the data we 

request across “workers”

We want to be fast 

pollev.com/tqm
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Lecture Outline

❖ Why threads?

❖ pthreads review

❖ Shared resources & data races

❖ Locks & mutexes

28
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Creating and Terminating Threads

❖

▪ Creates a new thread into *thread, with attributes *attr
(NULL means default attributes)

▪ Returns 0 on success and an error number on error (can check 
against error constants)

▪ The new thread runs start_routine(arg)

❖

▪ Equivalent of exit(retval); for a thread instead of a process

▪ The thread will automatically exit once it returns from 
start_routine()

29

int pthread_create(

pthread_t* thread,

const pthread_attr_t* attr,

void* (*start_routine)(void*), 

void* arg);

void pthread_exit(void* retval);

Output parameter.

Gives us a “thread_descriptor”

Function pointer! 

Takes & returns void* 

to allow “generics” in C

Argument for the thread function

start_routine

continues

parentpthread_create
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What To Do After Forking Threads?

❖

▪ Waits for the thread specified by thread to terminate

▪ The thread equivalent of waitpid()

▪ The exit status of the terminated thread is placed in **retval

❖

▪ Mark thread specified by thread as detached – it will clean up 
its resources as soon as it terminates

30

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread, void** retval);

Parent thread waits for child 

thread to exit, gets the child’s 

return value, and child thread is 

cleaned up

start_routine

continues

parentcreate join

Detach a thread.

Thread is cleaned up when it is 

finished

continues

parentcreate detach

start_routine
x
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Thread Examples

❖ See cthreads.c

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

❖ See exit_thread.cc

▪ Do we need to join every thread we create?

❖ See ccthreads.cc

▪ Rewriting cthreads.c, but in C++

31
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Lecture Outline

❖ Why threads?

❖ pthreads review

❖ Shared resources & data races

❖ Locks & mutexes

32
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Shared Resources

❖ Some resources are shared between threads and 
processes

❖ Thread Level:

▪ Memory

▪ Things shared by processes

❖ Process level

▪ I/O devices

• Files

• terminal input/output

• The network

33

Issues arise when we 

try to shared things
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Data Races

❖ Two memory accesses form a data race if different 
threads access the same location, and at least one is a 
write, and they occur one after another

▪ Means that the result of a program can vary depending on chance 
(which thread ran first?)

34
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Data Race Example

❖ If your fridge has no milk, 
then go out and buy some more

▪ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:

35

if (!milk) {

buy milk

}

! !
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Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…

36

if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

pollev.com/tqm
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Data Race Example

❖ Idea: leave a note!

▪ Does this fix the problem?

A. Yes, problem fixed

B. No, could end up with no milk

C. No, could still buy multiple milk

D. We’re lost…
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if (!note) {

if (!milk) {

leave note

buy milk

remove note

}

}

time

you roommate

Check note

Check milk

Leave note

Buy milk

Check note

Check milk

Leave note

Buy milk

*There are other 

possible scenarios 

that result in 

multiple milks

We can be interrupted

between checking note and 

leaving note 

pollev.com/tqm
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Threads and Data Races

❖ Data races might interfere in painful, non-obvious ways, 
depending on the specifics of the data structure

❖ Example:  two threads try to read from and write to the 
same shared memory location

▪ Could get “correct” answer

▪ Could accidentally read old value

▪ One thread’s work could get “lost”

❖ Example: two threads try to push an item onto the head 
of the linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure! 
38
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Lecture Outline

❖ Why threads?

❖ pthreads review

❖ Shared resources & data races

❖ Locks & mutexes

39
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Synchronization

❖ Synchronization is the act of preventing two (or more) 
concurrently running threads from interfering with each 
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner 
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data 
structures (informally, “nothing bad happens”)

40



CIT 5950, Spring 2023L07:  ThreadsUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that 
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

41

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:
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Milk Example – What is the Critical Section?

❖ What if we use a lock on the 
refrigerator?

▪ Probably overkill – what if 
roommate wanted to get eggs?

❖ For performance reasons, only 
put what is necessary in the 
critical section

▪ Only lock the milk

▪ But lock all steps that must run
uninterrupted (i.e. must run
as an atomic unit)

42

fridge.lock()

if (!milk) {

buy milk

}

fridge.unlock()

milk_lock.lock()

if (!milk) {

buy milk

}

milk_lock.unlock()
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pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

43

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired 
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pthread Mutex Examples

❖ See total.cc

▪ Data race between threads

❖ See total_locking.cc

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code 
and to total?

▪ Likely slower than both– only 1 thread can increment at a time, 
and must deal with checking the lock and switching between 
threads

▪ One possible fix:  each thread increments a local variable and then 
adds its value (once!) to the shared variable at the end

• See total_locking_better.cc
44
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