
CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Threads: Shared Data
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Upcoming Due Dates

❖ HW2 (Threads)

▪ To be released tonight!

▪ Should have everything you need now

▪ Recitation will help ☺

▪ Wednesday lecture may help with thinking about threads, but not
strictly required

2

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Synchronization

❖ Synchronization is the act of preventing two (or more)
concurrently running threads from interfering with each
other when operating on shared data

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

❖ Goals of synchronization:

▪ Liveness – ability to execute in a timely manner
(informally, “something good eventually happens”)

▪ Safety – avoid unintended interactions with shared data
structures (informally, “nothing bad happens”)

3
First concern we will be looking at with locks

These are

VERY

related

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Atomicity

❖ Atomicity: An operation or set of operations on some data
are atomic if the operation(s) are indivisible, that no other
operation(s) on that same data can interrupt/interfere.

❖ Aside on terminology:

▪ Often interchangeable with the term “Linearizability”

▪ Atomic has a different (but similar-ish) meaning in the context of
data bases and ACID.

4

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Lock Synchronization

❖ Use a “Lock” to grant access to a critical section so that
only one thread can operate there at a time

▪ Executed in an uninterruptible (i.e. atomic) manner

❖ Lock Acquire

▪ Wait until the lock is free,
then take it

❖ Lock Release

▪ Release the lock

▪ If other threads are waiting, wake exactly one up to pass lock to

5

// non-critical code

lock.acquire();

// critical section

lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)
▪ pthread.h defines datatype pthread_mutex_t

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

❖ pthread_mutex_unlock()

▪ Releases the lock

❖

▪ “Uninitializes” a mutex – clean up when done

6

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,

const pthread_mutexattr_t* attr);

int pthread_mutex_destroy(pthread_mutex_t* mutex);

Un-blocks when lock is acquired

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

pthread Mutex Examples

❖ See total.cc

▪ Data race between threads

❖ See total_locking.cc

▪ Adding a mutex fixes our data race

❖ How does total_locking compare to sequential code
and to total?

▪ Likely slower than both– only 1 thread can increment at a time,
and must deal with checking the lock and switching between
threads

▪ One possible fix: each thread increments a local variable and then
adds its value (once!) to the shared variable at the end

• See total_locking_better.cc
7

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Lecture Outline

❖ Locks & mutexes

❖ Liveness & deadlocks

❖ Condition Variables

8

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Liveness

❖ Liveness: A set of properties that ensure that threads
execute in a timely manner, despite any contention on
shared resources.

❖ When is called, the calling
thread blocks (stops executing) until it can acquire the
lock.

▪ What happens if the thread can never acquire the lock?

9

pthread_mutex_lock();

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Liveness Failure: Releasing locks

❖ If locks are not released by a thread, then other threads
cannot acquire that lock

❖ See release_locks.cc

▪ Example where locks are not released once critical section is
completed.

10

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Liveness Failure: Deadlocks

❖ Consider the case where there are two threads and two
locks

▪ Thread 1 acquires lock1

▪ Thread 2 acquires lock2

▪ Thread 1 attempts to acquire lock2 and blocks

▪ Thread 2 attempts to acquire lock1 and blocks

❖ See milk_deadlock.cc

❖ Note: there are many algorithms for detecting/preventing
deadlocks

11

Neither thread can make progress

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Liveness Failure: Mutex Recursion

❖ What happens if a thread tries to re-acquire a lock that it
has already acquired?

❖ See recursive_deadlock.cc

❖ By default, a mutex is not re-entrant.

▪ The thread won’t recognize it already has the lock, and block until
the lock is released

12

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Aside: Recursive Locks

❖ Mutex’s can be configured so that you it can be re-locked
if the thread already has locked it. These locks are called
recursive locks (sometimes called re-entrant locks).

❖ Acquiring a lock that is already held will succeed

❖ To release a lock, it must be released the same number of
times it was acquired

❖ Has its uses, but generally discouraged.

13

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Lecture Outline

❖ Locks & mutexes

❖ Liveness & deadlocks

❖ Condition Variables

14

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Aside: sleep()

❖ unistd.h defines the function:

▪ Makes the calling thread sleep for the specified number of
seconds, resuming execution afterwards

❖ Useful for manipulating scheduling for testing and
demonstration purposes

▪ Also for asynchronous/non-blocking I/O, but not covered in this
course.

❖ Necessary for HW2 so that auto-graders work
15

unsigned int sleep(unsigned int seconds);

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each
other to know when they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some
operation

▪ The consumer thread can only produce things once the producer
has produced them

16

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Naïve Solution

❖ Consider the example where a thread must wait to be
notified before it can print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the
consumer thread can print

❖ See spinning.cc

❖ Alternative: Condition variables

17

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume
execution

18

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

19

int pthread_cond_init(pthread_cond_t* cond,

const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition
variable. Once unblocked (by one of the functions below),
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

❖ See cond.cc
20

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

pthread_mutex_t* mutex);

CIT 5950, Spring 2023L08: Mutex & CondUniversity of Pennsylvania

Aside: Things left out

❖ MANY things left out of this lecture

❖ Synchronization methods:

▪ Semaphores

▪ Monitors

❖ Concurrency properties

▪ ACID (databases)

▪ CAP theorem

❖ A lot more concurrency stuff covered in CIS 5050 ☺

21

	Default Section
	Slide 1: Threads: Shared Data Computer Systems Programming, Spring 2023
	Slide 2: Upcoming Due Dates
	Slide 3: Synchronization
	Slide 4: Atomicity
	Slide 5: Lock Synchronization
	Slide 6: pthreads and Locks
	Slide 7: pthread Mutex Examples
	Slide 8: Lecture Outline
	Slide 9: Liveness
	Slide 10: Liveness Failure: Releasing locks
	Slide 11: Liveness Failure: Deadlocks
	Slide 12: Liveness Failure: Mutex Recursion
	Slide 13: Aside: Recursive Locks
	Slide 14: Lecture Outline
	Slide 15: Aside: sleep()
	Slide 16: Thread Communication
	Slide 17: Naïve Solution
	Slide 18: Condition Variables
	Slide 19: pthreads and condition variables
	Slide 20: pthreads and condition variables
	Slide 21: Aside: Things left out

