
CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Thread Wrap-up & Scheduling
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

❖ Is it possible for a single threaded program to deadlock?

A. Yes

B. No

2

pollev.com/tqm

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Upcoming Due Dates

❖ HW2 (Threads)

▪ Released

▪ Should have everything you need

▪ Recitation will help ☺

▪ This lecture will help

3

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Scheduling

4

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Aside: sleep()

❖ unistd.h defines the function:

▪ Makes the calling thread sleep for the specified number of
seconds, resuming execution afterwards

❖ Useful for manipulating scheduling for testing and
demonstration purposes

▪ Also for asynchronous/non-blocking I/O, but not covered in this
course.

❖ Necessary for HW2 so that auto-graders work
5

unsigned int sleep(unsigned int seconds);

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Thread Communication

❖ Sometimes threads may need to communicate with each
other to know when they can perform operations

❖ Example: Producer and consumer threads

▪ One thread creates tasks/data

▪ One thread consumes the produced tasks/data to perform some
operation

▪ The consumer thread can only produce things once the producer
has produced them

6

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Naïve Solution

❖ Consider the example where a thread must wait to be
notified before it can print something out and terminate

❖ Possible solution: “Spinning”

▪ Infinitely loop until the producer thread notifies that the
consumer thread can print

❖ See spinning.cc

7

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

❖ Does “spinning” fix the
deadlock?

A. Yes

B. No, possible deadlock

C. No, not thread safe

D. Segmentation Fault

E. We’re Lost…

8

bool print_ok = false;

pthread_mutex_t lock;

void* consumer(void* arg) {

// "spin" until print_ok

// is true

pthread_mutex_lock(&lock);

while (!print_ok) {

pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);

}

pthread_mutex_unlock(&lock);

cout << "Ok to print :)";

cout << endl;

pthread_exit(nullptr);

}

pollev.com/tqm

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Condition Variables

❖ Variables that allow for a thread to wait until they are
notified to resume

❖ Avoids waiting clock cycles “spinning”

❖ Done in the context of mutual exclusion

▪ a thread must already have a lock, which it will temporarily
release while waiting

▪ Once notified, the thread will re-acquire a lock and resume
execution

9

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Initializes a condition variable with specified attributes

❖

▪ “Uninitializes” a condition variable – clean up when done

10

int pthread_cond_init(pthread_cond_t* cond,

const pthread_condattr_t* attr);

int pthread_cond_destroy(pthread_cond_t* cond);

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

pthreads and condition variables

❖ pthread.h defines datatype pthread_cond_t

❖ pthread_mutex_init()

▪ Atomically releases the mutex and blocks on the condition
variable. Once unblocked (by one of the functions below),
function will return and calling thread will have the mutex locked

❖ pthread_mutex_lock()

▪ Unblock at least one of the threads on the specified condition

❖ pthread_mutex_unlock()

▪ Unblock all threads blocked on the specified condition

❖ See cond.cc
11

int pthread_cond_broadcast(pthread_cond_t* cond);

int pthread_cond_signal(pthread_cond_t* cond);

int pthread_cond_wait(pthread_cond_t* cond,

pthread_mutex_t* mutex);

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Aside: Things left out

❖ MANY things left out of this lecture

❖ Synchronization methods:

▪ Semaphores

▪ Monitors

❖ Concurrency properties

▪ ACID (databases)

▪ CAP theorem

❖ A lot more concurrency stuff covered in
CIS 5050 & CIS 5480 ☺

12

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Lecture Outline

❖ Condition Variables

❖ Scheduling

13

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Reminder: Threads

❖ Separate the concept of a process from the “thread of
execution”

▪ Threads are contained within a process

▪ Usually called a thread, this is a sequential execution stream
within a process

❖ Has its own stack, program counter & other registers

❖ In most modern OS’s:

▪ Threads are the unit of scheduling.
14

thread

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Reminder: Exceptions

❖ An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

OS as the Scheduler

❖ The scheduler is code that is part of the kernel (OS)

❖ The scheduler runs when a thread:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling other threads

▪ Choosing which one to run

▪ Deciding how long to run it

16

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Scheduler Terminology

❖ The scheduler has a scheduling algorithm to decide what
runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: amount of work completed over an interval of time

▪ Wait time: Average time a “task” is “alive” but not running

▪ Turnaround time: time between task being ready and completing

▪ Response time: time it takes between task being ready and when
it can take user input

▪ Etc…

17

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Goals

❖ The scheduler will have various things to prioritize

❖ Some examples:

❖ Minimizing wait time

▪ Get threads started as soon as possible

❖ Minimizing latency

▪ Quick response times and task completions are preferred

❖ Maximizing throughput

▪ Do as much work as possible per unit of time

❖ Maximizing fairness

▪ Make sure every thread can execute fairly

❖ These goals depend on the system and can conflict
18

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Scheduling: Other Considerations

❖ It takes time to context switch between threads

▪ Could get more work done if thread switching is minimized

❖ Scheduling takes resources

▪ It takes time to decide which thread to run next

▪ It takes space to hold the required data structures

❖ Different tasks have different priorities

▪ Higher priority tasks should finish first

19

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

20

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

First Come First Serve (FCFS)

❖ Idea: Whenever a thread is ready, schedule it to run until
it is finished (or blocks).

❖ Maintain a queue of ready threads

▪ Threads go to the back of the queue when it arrives or becomes
unblocked

▪ The thread at the front of the queue is the next to run

21

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Example of FCFS

22

❖ Example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
| Job 1 | Job 2 | Job 3 |

0 24 27 30

❖ Total waiting time: 0 + 24 + 27 = 51

❖ Average waiting time: 51/3 = 17

❖ Total turnaround time: 24 + 27 + 30 = 81

❖ Average turnaround time: 81/3 = 27

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
First Come First Serve

23

pollev.com/tqm

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

FCFS Analysis

❖ Advantages:

▪ Simple, low overhead

▪ Hard to screw up the implementation

▪ Each thread will DEFINITELY get to run eventually.

❖ Disadvantages

▪ Doesn’t work well for interactive systems

▪ Throughput can be low due to long threads

▪ Large fluctuations in average turn around time

▪ Priority not taken into considerations

24

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Shortest Job First (SJF)

❖ Idea: variation on FCFS, but have the tasks with the
smallest CPU-time requirement run first

▪ Arriving jobs are instead put into the queue depending on their
run time, shorter jobs being towards the front

▪ Scheduler selects the shortest job (1st in queue) and runs till
completion

25

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Example of SJF

26

❖ Same example workload with three “jobs”:
Job 1: 24 time units; Job 2: 3 units; Job 3: 3 units

❖ FCFS schedule:
| Job 2 | Job 3 | Job 1 |

0 3 6 30

❖ Total waiting time: 6 + 0 + 3 = 9

❖ Average waiting time: 3

❖ Total turnaround time: 30 + 3 + 6 = 39

❖ Average turnaround time: 39/3 = 13

1 CPU
Job 2 arrives slightly after job 1.
Job 3 arrives slightly after job 2

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Shortest Job First

27

pollev.com/tqm

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

SJF Analysis

❖ Advantages:

▪ Still relatively simple, low overhead

▪ provably minimal average turnaround time

❖ Disadvantages

▪ Starvation possible

• If quick jobs keep arriving, long jobs will keep being pushed back and
won’t execute

▪ How do you know how long it takes for something to run?

• You CAN’T. You can use a history of past behavior to make a guess.

▪ Priority not taken into considerations

28

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Types of Scheduling Algorithms

❖ Non-Preemptive: if a thread is running, it continues to run
until it completes or until it gives up the CPU

▪ First come first serve (FCFS)

▪ Shortest Job First (SJF)

❖ Preemptive: the thread may be interrupted after a given
time and/or if another thread becomes ready

▪ Round Robin

▪ Priority Round Robin

▪ …

29

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Round Robin

❖ Sort of a preemptive version of FCFS

▪ Whenever a thread is ready, add it to the end of the queue.

▪ Run whatever job is at the front of the queue

❖ BUT only let it run for a fixed amount of time (quantum).

▪ If it finishes before the time is up, schedule another thread to run

▪ If time is up, then send the running thread back to the end of the
queue.

30

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Example of Round Robin

31

❖ Same example workload:

Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

❖ RR schedule with time quantum=2:
|Job 1|Job 2|Job 3|Job 1|Jo2|Jo3|Job 1| … |Job 1|

0 2 4 6 8 9 10 12,14… 30

❖ Total waiting time: (0 + 4 + 2) + (2 + 4) + (4 + 3) = 19
▪ Counting time spent waiting between each “turn” a job has with the CPU

❖ Average waiting time: 19/3 (~6.33)

❖ Total turnaround time: 30 + 9 + 10 = 49

❖ Average turnaround time: 49/3 (~16.33)

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

❖ What are the advantages/disadvantages/concerns with
Round Robin?

32

pollev.com/tqm

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Round Robin Analysis

❖ Advantages:

▪ Still relatively simple

▪ Can works for interactive systems

❖ Disadvantages

▪ If quantum is too small, can spend a lot of time context switching

▪ If quantum is too large, approaches FCFS

▪ Still assumes all processes have the same priority.

❖ Rule of thumb:

▪ Choose a unit of time so that most jobs (80-90%) finish in one
usage of CPU time

33

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

RR Variant: Priority Round Robin

❖ Same idea as round robin, but with multiple queues for
different priority levels.

❖ Scheduler chooses the first item in the highest priority
queue to run

❖ Scheduler only schedules items in lower priorities if all
queues with higher priority are empty.

34

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

RR Variant: Multi Level Feedback

35

❖ Each priority level has a ready queue, and a time quantum

❖ Thread enters highest priority queue initially, and lower queue with each
timer interrupt

❖ If a thread voluntarily stops using CPU before time is up, it is moved to
the end of the current queue

❖ Bottom queue is standard Round Robin

❖ Thread in a given queue not scheduled until all higher queues are empty

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Multi Level Feedback Analysis

❖ Threads with high I/O bursts are preferred

▪ Makes higher utilization of the I/O devices

▪ Good for interactive programs (keyboard, terminal, mouse is I/O)

❖ Threads that need the CPU a lot will sink to lower priority,
giving shorter threads a chance to run

❖ Still have to be careful in choosing time quantum

❖ Also have to be careful in choosing how many layers

36

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Multi Level Feedback Variants: Priority

❖ Can assign tasks different priority levels upon initiation
that decide which queue it starts in

▪ E.g. OS Services should have higher priority than HelloWorld.java

❖ Update the priority based on recent CPU usage rather
than overall cpu usage of a task

▪ Makes sure that priority is consistent with recent behavior

❖ Many others that vary from system to system

37

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

Why did we talk about this?

❖ Scheduling is fundamental to wards how computer can
multi-task

❖ This is a great example of how “systems” intersects with
algorithms :)

❖ It shows up occasionally in the real world :)

▪ Scheduling threads with priority with shared resources can cause
a priority inversion, potentially causing serious errors.

38

What really happened on Mars Rover Pathfinder, Mike Jones.
http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

39

The Priority Inversion Problem

T1

T2

T3

failed attempt to lock R lock(R) unlock(R)

lock(R) unlock(R)

Priority order: T1 > T2 > T3

T2 is causing a higher priority task T1 wait !

CIT 5950, Spring 2023L09: Cond & Deadlock DetectionUniversity of Pennsylvania

More

❖ For those curious, there was a LOT left out

❖ RTOS (Real Time Operating Systems)

▪ For real time applications

▪ CRITICAL that data and events meet defined time constraints

▪ Different focus in scheduling. Throughput is de-prioritized

❖ Fair-share scheduling

▪ Equal distribution across different users instead of by processes

❖ Priority Inversion

40

	Default Section
	Slide 1: Thread Wrap-up & Scheduling Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Upcoming Due Dates
	Slide 4: Lecture Outline
	Slide 5: Aside: sleep()
	Slide 6: Thread Communication
	Slide 7: Naïve Solution
	Slide 8
	Slide 9: Condition Variables
	Slide 10: pthreads and condition variables
	Slide 11: pthreads and condition variables
	Slide 12: Aside: Things left out
	Slide 13: Lecture Outline
	Slide 14: Reminder: Threads
	Slide 15: Reminder: Exceptions
	Slide 16: OS as the Scheduler
	Slide 17: Scheduler Terminology
	Slide 18: Goals
	Slide 19: Scheduling: Other Considerations
	Slide 20: Types of Scheduling Algorithms
	Slide 21: First Come First Serve (FCFS)
	Slide 22: Example of FCFS
	Slide 23
	Slide 24: FCFS Analysis
	Slide 25: Shortest Job First (SJF)
	Slide 26: Example of SJF
	Slide 27
	Slide 28: SJF Analysis
	Slide 29: Types of Scheduling Algorithms
	Slide 30: Round Robin
	Slide 31: Example of Round Robin
	Slide 32
	Slide 33: Round Robin Analysis
	Slide 34: RR Variant: Priority Round Robin
	Slide 35: RR Variant: Multi Level Feedback
	Slide 36: Multi Level Feedback Analysis
	Slide 37: Multi Level Feedback Variants: Priority
	Slide 38: Why did we talk about this?
	Slide 39: The Priority Inversion Problem
	Slide 40: More

