
CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Virtual Memory Overview
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

❖ What order do following set of threads finish under:

▪ First Come First Serve

▪ Shortest Job First

▪ Round Robin, Time Quantum = 3

2

pollev.com/tqm

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

❖ Midterm info:

▪ When do you want the midterm to open & close

▪ What ordering of lecture topics do you want for the week of the
midterm?

3

pollev.com/tqm

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Upcoming Due Dates

❖ HW2 (Threads) Due Monday February 2/27 @ 11:59 pm

▪ Released

▪ Due Date Extended

▪ Due in one week

❖ Midterm

▪ Take-home style on 3/1 or 3/2 ish: see lecture polls

▪ Logistics to be released soon (next lecture)

4

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Lecture Outline

❖ Motivation

❖ Virtualization

❖ Caching

5

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Review: Processes

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

6

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Memory (as we know it now)

❖ The CPU directly uses an address to access a location in
memory

9

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Problem 1: Sharing Memory

❖ How do we enforce process isolation?

▪ Could one process just calculate an address into another process?

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Problem 2: How do we segment things

❖ A process’ address space contains
many different “segments”

❖ How do we keep track of which
segment is which and the permissions
each segment may have?

▪ (e.g., that Read-Only data can’t be written)

11

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Problem 3: How does everything fit?

On a 64-bit machine, there are 264

bytes, which is:
18,446,744,073,709,551,616 Bytes
(1.844 x 1019)

12

Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(Not to scale; physical memory is smaller than the
period at the end of the sentence compared to the
virtual address space.)

This is just one address space,

consider multiple processes…

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Lecture Outline

❖ Motivation

❖ Virtualization

❖ Caching

13

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

This doesn’t work anymore

❖ The CPU directly uses an address to access a location in
memory

14

CPU

0:

1:

2:

3:

4:

5:

...

data

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Idea:

❖ We don’t need all processes to have their data in physical
memory, just the ones that are currently running

❖ For the process’ that are currently running: we don’t need
all their data to be in physical memory, just the parts that
are currently being used

❖ Data that isn’t currently stored in physical memory, can
be stored elsewhere (disk).

▪ Disk is "permanent storage" usually used for the file system

▪ Disk has a longer access time than physical memory (RAM)

15

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Pages

❖ Memory can be split up into units called “pages”

16

Address space
Physical memory

Pages currently in use are stored
in physical memory (RAM)

Pages not currently in use
are stored on disk

Unused pages may
not have any mapping

disk

 Ram may contain pages from
other active processes

Pages are fixed size chunks ~4KB

(4 * 1024 = 4096 bytes)

Pages on physical storage

are called a “Page Frame”

e.g., a Virtual page may not

have an accompanying page

frame until the page is used

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Unused Pages

On a 64-bit machine, there are 264

bytes, which is:
18,446,744,073,709,551,616 Bytes
(1.844 x 1019)

17

Laptops usually have around 8GB which is
8,589,934,592 Bytes (8.589 x 109)

(Not to scale; physical memory is smaller than the
period at the end of the sentence compared to the
virtual address space.)

As I write this slide, PowerPoint is using 212.7MB
which is: 223,032,115 Bytes (2.230 x 107)

Some programs don’t need 264 bytes,
so several pages may never be used

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Indirection

❖ "Any problem in computer science can be solved by
adding another level of indirection."

▪ David wheeler, inventor of the subroutine (e.g. functions)

❖ The ability to indirectly reference something using a
name, reference or container instead of the value itself. A
flexible mapping between a name and a thing allows
chagcing the thing without notifying holders of the name.

▪ May add some work to use indirection

▪ Example: Phone numbers can be transferred to new phones

❖ Idea: instead of directly referring to physical memory, add
a level of indirection 18

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Definitions

❖ Addressable Memory: the total amount of memory that
can be theoretically be accessed based on:

▪ number of addresses (“address space”)

▪ bytes per address (“addressability”)

❖ Physical Memory: the total amount of memory that is
physically available on the computer

❖ Virtual Memory: An abstraction technique for making
memory look larger than it is and hides many details from
the programs.

19

IT MAY NOT EXIST

ON REAL HARDWARE

Sometimes called “virtual memory”

or “virtual address space”

Adding Addressable Memory + Physical Memory doesn’t make sense

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Virtual Address Translation

❖ Programs don’t know about physical addresses; virtual
addresses are translated into them by the MMU

20

CPU

0:

1:

2:

3:

4:

5:

...
Virtual address

(0x300)

data

MMU

Physical address
(0x3)

Memory
Management
Unit

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Page Tables

❖ Virtual addresses can be converted into physical
addresses via a page table.

❖ There is one page table per processes, managed by the
MMU

21

More details about

translation on Wednesday

Virtual page # Valid Physical Page Number

0 0 null

1 1 0

2 1 1

3 0 disk

Valid determines if the

page is in physical memory

If a page is on disk,

MMU will fetch it

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Lecture Outline

❖ Motivation

❖ Virtualization

❖ Caching

22

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Problem: Paging Replacement

❖ We don’t have space to store all active pages in physical
memory.

❖ If we need to load in a page from disk, how do we decide
which page in physical memory to “evict”

❖ Goal: Minimize the number of times we have to go to
disk. It takes a while to go to disk.

23

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Paging Replacement Algorithms

❖ Simple Algorithms:

▪ Random choice

• “dumbest” method, easy to implement

▪ FIFO

• Replace the page that has been in physical memory the longest

❖ Both could evict a page that is used frequently and would
require going to disk to retrieve it again.

24

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

(Theoretically) Optimal Algorithm

❖ If we knew the precise sequence of requests for pages in
advance, we could optimize for smallest overall number
of faults

▪ Always replace the page to be used at the farthest point in future

▪ Optimal (but unrealizable since it requires us to know the future)

❖ Off-line simulations can estimate the performance of a
page replacement algorithm and can be used to measure
how well the chosen scheme is doing

❖ Optimal algorithm can be approximated by using the past
to predict the future

25

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

Least Recently Used (LRU)

❖ Assume pages used recently will be used again soon

▪ Throw out page that has been unused for longest time

❖ Past is usually a good indicator for the future

❖ LRU has significant overhead:

▪ A timestamp for each memory access that is updated in the page
table

▪ Sorted list of pages by timestamp

26

CIT 5950, Spring 2023L10: Virtual Memory StartUniversity of Pennsylvania

How to Implement LRU?

❖ Counter-based solution:

▪ Maintain a counter that gets incremented with each memory
access

▪ When we need to evict a page, pick the page with lowest counter

❖ List based solution

▪ Maintain a linked list of pages in memory

▪ On every memory access, move the accessed page to end

▪ Pick the front page to evict

❖ HashMap and LinkedList

▪ Maintain a hash map and a linked list

▪ The list acts the same as the list-based solution

▪ The HashMap has keys that are the page number, values that are
pointers to the nodes in the linked list to support O(1) lookup

27

	Default Section
	Slide 1: Virtual Memory Overview Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3
	Slide 4: Upcoming Due Dates
	Slide 5: Lecture Outline
	Slide 6: Review: Processes
	Slide 7: Multiprocessing: The Illusion
	Slide 8: Multiprocessing: The (Traditional) Reality
	Slide 9: Memory (as we know it now)
	Slide 10: Problem 1: Sharing Memory
	Slide 11: Problem 2: How do we segment things
	Slide 12: Problem 3: How does everything fit?
	Slide 13: Lecture Outline
	Slide 14: This doesn’t work anymore
	Slide 15: Idea:
	Slide 16: Pages
	Slide 17: Unused Pages
	Slide 18: Indirection
	Slide 19: Definitions
	Slide 20: Virtual Address Translation
	Slide 21: Page Tables
	Slide 22: Lecture Outline
	Slide 23: Problem: Paging Replacement
	Slide 24: Paging Replacement Algorithms
	Slide 25: (Theoretically) Optimal Algorithm
	Slide 26: Least Recently Used (LRU)
	Slide 27: How to Implement LRU?

