
CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Memory & STL
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

❖ How familiar are you with:

▪ ArrayList

▪ LinkedList

▪ Sets & Maps

2

pollev.com/tqm

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Upcoming Due Dates

❖ Midterm

▪ Take-home style on Wednesday 3/1 @ Noon till
Friday 3/3 @ noon

▪ Logistics released on Course Website

3

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Lecture Outline

❖ Memory Hierarchy

❖ STL

▪ vector

▪ list

❖ Containers & memory

4

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Data Access Time

❖ Data is stored on a physical piece of hardware

❖ The distance data must travel on hardware affects how
long it takes for that data to be processed

❖ Example: data stored closer to the CPU is quicker to
access

▪ We see this already with registers. Data in registers is stored on
the chip and is faster to access than registers

5

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Memory Hierarchy so far

❖ So far, we know of three places where we store data

▪ CPU Registers

• Small storage size

• Quick access time

▪ Physical Memory

• In-between registers and disk

▪ Disk

• Massive storage size

• Long access time

❖ As we go further from the CPU, storage space goes up,
but access times increase

6

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Processor-Memory Gap

❖ Processor speed kept growing ~55% per year

❖ Time to access memory didn’t grow as fast ~7% per year

❖ Memory access would create a bottleneck on
performance

7

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Cache

❖ Pronounced “cash”

❖ English: A hidden storage space for equipment, weapons,
valuables, supplies, etc.

❖ Computer: Memory with shorter access time used for the
storage of data for increased performance. Data is usually
either something frequently and/or recently used.

▪ Physical memory is a “Cache” of page frames which may be
stored on disk

▪ In HW1, the buffer in the BufferedFileReader was a “Cache” of file
contents

8

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Cache Policies

❖ Caches are of a fixed size

❖ Caches need to choose which data gets to be in the cache

❖ Like page replacement, cache’s have their own policies to
decide what data to evict/keep

▪ LRU is a strategy used for caches

▪ Some caches use other policies like tracking frequency of access

▪ Generally, caches stores chunks of data together

9

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Principle of Locality

❖ The tendency for the CPU to access the same set of
memory locations over a short period of time

❖ Two main types:

▪ Temporal Locality: If we access a portion of memory, we will
likely reference it again soon

▪ Spatial Locality: If we access a portion of memory, we will likely
reference memory close to it in the near future.

❖ Caches take advantage of these tendencies with the cache
policies.

10

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Memory Hierarchy

11

Each layer can be thought

of as a “cache” of the layer

below

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Details left out

❖ Virtual Memory

▪ COW Fork (Copy On Write)

▪ Details about shared process memory

▪ Transition Lookaside Buffers (TLB)

❖ Memory Hierarchy

▪ Cache Associativity

▪ Writing Policies

▪ Instruction Caches

▪ DRAM vs SRAM

▪ Writing code that consider locality

❖ A bunch of details that would be system-specific 12

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Lecture Outline

❖ Memory Hierarchy

❖ STL

▪ vector

▪ list

❖ Containers & memory

13

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

C++’s Standard Library

❖ C++’s Standard Library consists of four major pieces:

1) The entire C standard library

2) C++’s input/output stream library

• std::cin, std::cout, stringstreams, fstreams, etc.

3) C++’s standard template library (STL) ☜

• Containers, iterators, algorithms (sort, find, etc.), numerics

4) C+’+’s miscellaneous library

• Strings, exceptions, memory allocation, localization

14

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

STL Containers ☺

❖ A container is an object that stores (in memory) a
collection of other objects (elements)

▪ Implemented as class templates, so hugely flexible

▪ More info in C++ Primer §9.2, 11.2

❖ Several different classes of container
▪ Sequence containers (vector, deque, list, ...)

▪ Associative containers (set, map, multiset, multimap,
bitset, ...)

▪ Differ in algorithmic cost and supported operations

15

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

STL Containers

❖ STL containers store by value, not by reference

▪ When you insert an object, the container makes a copy

▪ If the container needs to rearrange objects, it makes copies

• e.g. if you sort a vector, it will make many, many copies

• e.g. if you insert into a map, that may trigger several copies

▪ What if you don’t want this (disabled copy constructor or copying
is expensive)?

• You can insert a wrapper object with a pointer to the object

– We’ll learn about these “smart pointers” soon

16

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

STL vector

❖ A generic, dynamically resizable array

▪ https://cplusplus.com/reference/vector/vector/

▪ Elements are store in contiguous memory locations

• Elements can be accessed using pointer arithmetic if you’d like

• Random access is O(1) time

▪ Adding/removing from the end is cheap (amortized constant
time)

▪ Inserting/deleting from the middle or start is expensive (linear
time)

▪ Most common member function: push_back()

• Adds an element to the end of the vector

17

Like a normal

C array!

Pointer arithmetic, then acces

Need to shift all of the

elements in the array

https://cplusplus.com/reference/vector/vector/

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

❖ What is the final value of v by the end of the main()
function?

A. [595]

B. [] // empty

C. nullptr

D. Program does not reach the end of main()

E. We’re lost…
18

pollev.com/tqm

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Our Tracer Class

❖ Wrapper class for a char value_

▪ Also holds unique unsigned int id_ (increasing from 0)

▪ Default ctor, cctor, dtor, op=, op< defined

▪ friend function operator<< defined

▪ Private helper method PrintID() to return
"(id_,value_)" as a string

▪ Class and member definitions can be found in Tracer.h and
Tracer.cc

❖ Useful for tracing behaviors of containers

▪ All methods print identifying messages

▪ Unique id_ allows you to follow individual instances

19

Sets id_ to be unique

for each instance

Two fields:

value

id (unique to the instance)

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

vector/Tracer Example

20

vectorfun.cc

#include <iostream>

#include <vector>

#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {

Tracer a, b, c;

vector<Tracer> vec;

cout << "vec.push_back " << a << endl;

vec.push_back(a);

cout << "vec.push_back " << b << endl;

vec.push_back(b);

cout << "vec.push_back " << c << endl;

vec.push_back(c);

cout << "vec[0]" << endl << vec[0] << endl;

cout << "vec[2]" << endl << vec[2] << endl;

return EXIT_SUCCESS;

}

Most containers are declared in library of same name

Construct three tracer instances & empty vector

Add tracers to

end of vector

Array syntax to access elements

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Why All the Copying?

21

Key:
Copy constructor

DestructedConstruct three tracer instances

(0,A) (1,B) (2,C)

id_ value_

a b c

Note:

- Capacity doubles each time capacity is reached

- Exact construction order when resizing is not important

(3,A)vec

Capacity = 1

(5,A)vec (4,B)

Capacity = 2

(7,A)vec (8,B)

Capacity = 4

(6,C)

Push back
calls

Tracers
constructed

0 3 (a,b,c)

1 4

2 6

3 9

4 10

5 15

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Other vector utilities

❖ pop_back()

▪ Removes the last element of the vector

❖ operator[](index)

▪ Access an element at a specific index of the vector

❖ at(index)

▪ Same as above, but throws an exception on invalid index

❖ clear()

▪ Removes all elements currently in the vector

❖ A bunch more:

▪ https://www.cplusplus.com/reference/vector/vector/

22

https://www.cplusplus.com/reference/vector/vector/

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

STL iterator

❖ Each container class has an associated iterator class
(e.g. vector<int>::iterator) used to iterate
through elements of the container

▪ http://www.cplusplus.com/reference/std/iterator/

▪ Iterator range is from begin up to end i.e., [begin , end)

• end is one past the last container element!

▪ Some container iterators support more operations than others

• All can be incremented (++), copied, copy-constructed

• Some can be dereferenced on RHS (e.g. x = *it;)

• Some can be dereferenced on LHS (e.g. *it = x;)

• Some can be decremented (--)

• Some support random access ([], +, -, +=, -=, <, > operators)

23

Specific to container and & element type

http://www.cplusplus.com/reference/std/iterator/

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

iterator Example

24

#include <vector>

#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {

Tracer a, b, c;

vector<Tracer> vec;

vec.push_back(a);

vec.push_back(b);

vec.push_back(c);

cout << "Iterating:" << endl;

vector<Tracer>::iterator it;

for (it = vec.begin(); it < vec.end(); it++) {

cout << *it << endl;

}

cout << "Done iterating!" << endl;

return EXIT_SUCCESS;

}

vectoriterator.cc

First element One past

the end

Increment to

next element
Dereference to access element

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Type Inference (C++11)

❖ The auto keyword can be used to infer types

▪ Simplifies your life if, for example, functions return complicated
types

▪ The expression using auto must contain explicit initialization for
it to work

25

// Calculate and return a vector

// containing all factors of n

std::vector<int> Factors(int n);

void foo(void) {

// Manually identified type

std::vector<int> facts1 =

Factors(324234);

// Inferred type

auto facts2 = Factors(12321);

// Compiler error here

auto facts3;

}

Compiler knows

return value of

Factors()

?????????

No information to

infer type

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

auto and Iterators

❖ Life becomes much simpler!

26

for (vector<Tracer>::iterator it = vec.begin(); it < vec.end(); it++) {

cout << *it << endl;

}

for (auto it = vec.begin(); it < vec.end(); it++) {

cout << *it << endl;

}

Look at all this space!!!

Another beautiful

feature of C++ ☺

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Range for Statement (C++11)

❖ Syntactic sugar similar to Java’s foreach

▪ General format:

▪ declaration defines loop variable

▪ expression is an object representing a sequence

• Strings, initializer lists, arrays with an explicit length defined, STL
containers that support iterators

27

// Prints out a string, one

// character per line

std::string str("hello");

for (auto c : str) {

std::cout << c << std::endl;

}

for (declaration : expression) {

statements

}

str = sequence of

characters

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Updated iterator Example

28

#include <vector>

#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {

Tracer a, b, c;

vector<Tracer> vec;

vec.push_back(a);

vec.push_back(b);

vec.push_back(c);

cout << "Iterating:" << endl;

// "auto" is a C++11 feature not available on older compilers

for (auto& p : vec) {

cout << p << endl;

}

cout << "Done iterating!" << endl;

return EXIT_SUCCESS;

}

vectoriterator_2011.cc

Look at how much more simplified this is!

No begin(), end(), or dereferencing! :O

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

STL Algorithms

❖ A set of functions to be used on ranges of elements

▪ Range: any sequence that can be accessed through iterators or
pointers, like arrays or some of the containers

▪ General form:

❖ Algorithms operate directly on range elements rather
than the containers they live in
▪ Make use of elements’ copy ctor, =, ==, !=, <

▪ Some do not modify elements

• e.g. find, count, for_each, min_element, binary_search

▪ Some do modify elements

• e.g. sort, transform, copy, swap

29

algorithm(begin, end, ...);

Takes a range of a sequence to operate on

Rest depends on the algo

Appropriate operator(s) must be defined for

the element to use an STL algorithm

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Algorithms Example

30

#include <vector>

#include <algorithm>

#include "Tracer.h"

using namespace std;

void PrintOut(const Tracer& p) {

cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {

Tracer a, b, c;

vector<Tracer> vec;

vec.push_back(c);

vec.push_back(a);

vec.push_back(b);

cout << "sort:" << endl;

sort(vec.begin(), vec.end());

cout << "done sort!" << endl;

for_each(vec.begin(), vec.end(), &PrintOut);

return 0;

}

vectoralgos.cc

Not in order

Sort elements from

[vec.begin(), vec.end())

Runs function on each element.

In this case, prints out each element

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

STL list

❖ A generic doubly-linked list

▪ https://cplusplus.com/reference/list/list/

▪ Elements are not stored in contiguous memory locations

• Does not support random access (e.g. cannot do list[5])

▪ Some operations are much more efficient than vectors

• Constant time insertion, deletion anywhere in list

– push_front()and pop_front() now exist!

– Can iterate forward or backwards

▪ Has a built-in sort member function

▪ Doesn’t copy! Manipulates list structure instead of element
values

❖ Different containers have different functions available
31

Iterate backward: --

Iterate forward: ++

https://cplusplus.com/reference/list/list/

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

list Example

32

#include <list>

#include <algorithm>

#include "Tracer.h"

using namespace std;

void PrintOut(const Tracer& p) {

cout << " printout: " << p << endl;

}

int main(int argc, char** argv) {

Tracer a, b, c;

list<Tracer> lst;

lst.push_back(c);

lst.push_back(a);

lst.push_back(b);

cout << "sort:" << endl;

lst.sort();

cout << "done sort!" << endl;

for_each(lst.begin(), lst.end(), &PrintOut);

return 0;

}

listexample.cc

Use case is similar to Vector, but

internal implementation is different

Won’t copy elements, just modifies

the next and prev pointers

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Lecture Outline

❖ Memory Hierarchy

❖ STL

▪ vector

▪ list

❖ Containers & memory

33

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Choosing a Container

❖ A common problem in CS (probably done in 5940/5960
more) is choosing which data structure to use for a certain
problem.

❖ You need to consider:

▪ How data is stored in that container

▪ How our program interacts with that data

34

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

❖ If I wanted to maintain a sequence of numbers where I
very often had to add and remove things from the front,
what should I theoretically use?

A. vector

B. list

C. Neither one is particularly better than the other

D. We’re lost…

35

pollev.com/tqm

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

❖ If I wanted to maintain a sequence of numbers where I
very often had to access elements via an index, which
should I theoretically use?

A. vector

B. list

C. Neither one is particularly better than the other

D. We’re lost…

36

pollev.com/tqm

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

❖ If I wanted to maintain a sequence of numbers where I
repeatedly generated a random number and inserted that
number into the sequence so that it was in order… which
should I theoretically use?

▪ Can assume that insertion is done using a linear search

A. vector

B. list

C. Neither one is particularly better than the other

D. We’re lost…

37

pollev.com/tqm

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

❖ If I wanted to maintain a sequence of numbers where the
sequence already has 500,000 numbers, I generate a
random index, and remove the number at that index.
Repeat till the sequence is empty. Which should I
theoretically use?

A. vector

B. list

C. Neither one is particularly better than the other

D. We’re lost…

38

pollev.com/tqm

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

Experiment:

❖ Do the random sorted insertion and random removal and
time it for 100,000, 200,00, … 500,000 elements. Average
over 5 iterations

❖ Both do a linear
search to insert
and to remove

❖ Result:

❖ Why? Spatial locality, data in a vector is next to each
other. Easy for better cache performance & optimization

39

CIT 5950, Spring 2023L13: Memory & STLUniversity of Pennsylvania

vector

❖ The “default” container for storing a sequence of data is a
vector

❖ Much better optimization and cache performance for
vector

❖ You should almost always use a vector instead of a list

❖ If you think you may want to use a list…

❖ Use a vector

❖ If you think really hard and are sure you want a list…

❖ Ok fine, you can use a list.
40

	Default Section
	Slide 1: Memory & STL Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Upcoming Due Dates
	Slide 4: Lecture Outline
	Slide 5: Data Access Time
	Slide 6: Memory Hierarchy so far
	Slide 7: Processor-Memory Gap
	Slide 8: Cache
	Slide 9: Cache Policies
	Slide 10: Principle of Locality
	Slide 11: Memory Hierarchy
	Slide 12: Details left out
	Slide 13: Lecture Outline
	Slide 14: C++’s Standard Library
	Slide 15: STL Containers
	Slide 16: STL Containers
	Slide 17: STL vector
	Slide 18
	Slide 19: Our Tracer Class
	Slide 20: vector/Tracer Example
	Slide 21: Why All the Copying?
	Slide 22: Other vector utilities
	Slide 23: STL iterator
	Slide 24: iterator Example
	Slide 25: Type Inference (C++11)
	Slide 26: auto and Iterators
	Slide 27: Range for Statement (C++11)
	Slide 28: Updated iterator Example
	Slide 29: STL Algorithms
	Slide 30: Algorithms Example
	Slide 31: STL list
	Slide 32: list Example
	Slide 33: Lecture Outline
	Slide 34: Choosing a Container
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Experiment:
	Slide 40: vector

