
CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Fork & Pipe
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Logistics

❖ HW3 Posted Due Thursday 3/30 @ 11:59

▪ Should have everything you need

▪ Should be on the shorter side theoretically

❖ Check-in 07 to be released today/tomorrow

▪ Due Before Monday’s lecture

❖ Project Partner Sign up to be released soon

2

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Lecture Summary

❖ A unique_ptr takes ownership of a pointer

▪ Cannot be copied, but can be moved

▪ get() returns a copy of the pointer, but is dangerous to use;
better to use release() instead

▪ reset() deletes old pointer value and stores a new one

❖ A shared_ptr allows shared objects to have multiple
owners by doing reference counting
▪ deletes an object once its reference count reaches zero

❖ A weak_ptr works with a shared object but doesn’t
affect the reference count

▪ Can’t actually be dereferenced, but can check if the object still
exists and can get a shared_ptr from the weak_ptr if it does

3

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Some Important Smart Pointer Methods

❖ std::unique_ptr U;

▪ U.get()

▪ U.release()

▪ U.reset(q)

❖ std::shared_ptr S;

▪ S.get()

▪ S.use_count()

▪ S.unique()

❖ std::weak_ptr W;

▪ W.lock()

▪ W.use_count()

▪ W.expired()

4

Returns the raw pointer U is managing

U stops managing its raw pointer and returns the raw pointer

U cleans up its raw pointer and takes ownership of q

Returns the raw pointer S is managing

Returns the reference count

Returns true iff S.use_count() == 1

Returns the reference count

Constructs a shared pointer based off of W and returns it

Returns true iff W is expired (W.use_count() == 0)

Visit http://www.cplusplus.com/ for more information on these!

http://www.cplusplus.com/

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

“Smart” Pointers

❖ Smart pointers still don’t know everything, you must be
careful with what pointers you give it to manage.

▪ Smart pointers can’t tell if a pointer is on the heap or not.

• Still uses delete on default.

▪ Smart pointers can’t tell if you are re-using a raw pointer.

5

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Using a non-heap pointer

6

#include <cstdlib>

#include <memory>

using std::shared_ptr;

using std::weak_ptr;

int main(int argc, char **argv) {

int x = 333;

shared_ptr<int> p1(&x);

return EXIT_SUCCESS;

}

❖ Smart pointers can’t tell if the pointer
you gave points to the heap!
▪ Will still call delete on the

pointer when destructed.

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Re-using a raw pointer

7

#include <cstdlib>

#include <memory>

using std::unique_ptr;

int main(int argc, char **argv) {

int *x = new int(333);

unique_ptr<int> p1(x);

unique_ptr<int> p2(x);

return EXIT_SUCCESS;

}

❖ Smart pointers can’t
tell if you are re-using
a raw pointer.

p1 333

p2

!! Double
Delete!!

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Re-using a raw pointer

8

#include <cstdlib>

#include <memory>

using std::shared_ptr;

int main(int argc, char **argv) {

int *x = new int(333);

shared_ptr<int> p1(x); // ref count:

shared_ptr<int> p2(x); // ref count:

return EXIT_SUCCESS;

}

❖ Smart pointers can’t
tell if you are re-using
a raw pointer.

p1 333

p2

!! Double
Delete!!

Ref count = 1

Ref count = 1

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Re-using a raw pointer: Fixed Code

9

#include <cstdlib>

#include <memory>

using std::shared_ptr;

int main(int argc, char **argv) {

int *x = new int(333);

shared_ptr<int> p1(new int(333));

shared_ptr<int> p2(p1); // ref count:

return EXIT_SUCCESS;

}

❖ Smart pointers can’t
tell if you are re-using
a raw pointer.
▪ Takeaway: be

careful!!!!
▪ Safer to use cctor
▪ To be extra safe,

don’t have a raw
pointer variable!

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Lecture Outline

❖ fork() and wait()

❖ stdin, stdout, and the file table

❖ exec*() and pipe()

❖ HW4 Overview & Hints

10

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

❖ Any questions from the check-in before we begin?

11

pollev.com/tqm

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Review: Address Spaces

❖ A process has its own
address space

▪ Includes segments for different parts
of memory

▪ A process usually has one or more
threads

• A thread tracks its current state using
the stack pointer (SP) and program
counter (PC)

❖ New processes are created with:

12

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PCpid_t fork();

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the
parent

13

pid_t fork();

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

14

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

15

parent

OS

fork()

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

16

parent child

OS

clone

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

17

parent child

OS

child pid 0

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

fork() example

18

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 595;

} else {

x = 593;

}

cout << x << endl;

Always prints "Hello"

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

fork() example

19

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 595;

} else {

x = 593;

}

cout << x << endl;

Always prints "Hello"

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

fork() example

20

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 595;

} else {

x = 593;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 595;

} else {

x = 593;

}

cout << x << endl;

fork()

Child Process (PID = Y)Parent Process (PID = X)

Does NOT print "Hello"

fork_ret = Y fork_ret = 0

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

fork() example

21

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 595;

} else {

x = 593;

}

cout << x << endl;

Always prints "Hello"

cout << "Hello!" << endl;

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

x = 595;

} else {

x = 593;

}

cout << x << endl;

fork()

Child Process (PID = Y)Parent Process (PID = X)

Always prints "593" Always prints "595"

fork_ret = Y fork_ret = 0

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Exiting a Process

❖

▪ Causes the current process to exit normally

▪ Automatically called by main() when main returns

▪ Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)

• This is the same int returned by main()

▪ The exit status is accessible by the parent process with wait()
or waitpid().

22

void exit(int status);

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

"join"-ing a Process

❖

▪ The “process equivalent” of pthread_join()

▪ Calling process waits for a child process (specified by pid) to exit

• Also cleans up the child process

▪ Gets the exit status of child process through output parameter
wstatus

▪ options are optional, pass in 0 for default options in most
cases

▪ Returns process ID of child who was waited for or -1 on error

❖ Wait

▪ Equivalent of waitpid, but waits for ANY child

23

pid_t waitpid(pid_t pid, int *wstatus,

int options);

pid_t wait(int *wstatus);

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Demo: fork_example

❖ See fork_example.cc

▪ Brief code demo to see the various states of a process

• Running

• Zombie

• Terminated

▪ Makes use of sleep(), waitpid() and exit()!

24

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

❖ We’ve briefly mentioned that it is *possible* to have two
processes share information. How could this be done?

25

pollev.com/tqm

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Lecture Outline

❖ fork() and wait()

❖ stdin, stdout, and the file table

❖ exec*() and pipe()

❖ HW4 Overview & Hints

26

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

stdout, stdin, stderr

❖ By default, there are three “files” open when a program
starts

▪ stdin: for reading terminal input typed by a user

• cin in C++

• System.in in Java

▪ stdout: the normal terminal output.

• cout in C++

• System.out in Java

▪ stderr: the terminal output for printing errors

• cerr in C++

• System.err in Java

27

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

stdout, stdin, stderr

❖ stdin, stdout, and stderr all have initial file descriptors
constants defined in unistd.h

▪ STDIN_FILENO -> 0

▪ STDOUT_FILENO -> 1

▪ STDERR_FILENO -> 2

❖ These will be open on default for a process

❖ Printing to stdout with cout will use
write(STDOUT_FILENO, …)

28

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

File Descriptor Table

❖ In addition to an address space, each process will have it’s
own file descriptor table managed by the OS

❖ The table is just an array, and the file descriptor is an
index into it.

29

Terminal input

Terminal output

Foo.txt

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Redirecting stdin/out/err

❖ We can change things so that STDOUT_FILENO is
associated with something other than a terminal output.

❖ Now, any calls to printf, cout, System.out, etc now go to
the redirected output

❖ To do this: use dup2()

30

Terminal input

Terminal output

Foo.txt

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

❖ Given the following code, what is the contents of
"hello.txt" and what is printed to stdout?

31

pollev.com/tqm

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Lecture Outline

❖ fork() and wait()

❖ stdin, stdout, and the file table

❖ exec*() and pipe()

❖ HW4 Overview & Hints

32

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

exec*()

❖ Loads in a new program for execution

❖ PC, SP, registers, and memory are all reset so that the
specified program can run

33

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

execvp()

❖ execvp

❖ Duplicates the action of the shell (terminal) in terms of
finding the command/program to run

❖ Argv is an array of char*, the same kind of argv that is
passed to main() in a C/C++ program

▪ argv[0] MUST have the same contents as the file parameter

▪ argv must have NULL/nullptr as the last entry of the array

❖ Returns -1 on error. Does NOT return on success

34

int execvp(const char *file,

char* const argv[]);

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

35

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Exec Demo

❖ See exec_example.cc

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens if we open some files before exec?

▪ What happens if we replace stdout with a file?

❖ NOTE: When a process exits, then it will close all of its
open files by default

36

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Pipes

❖ Creates a unidirectional data channel for IPC

❖ Communication through file descriptors! // POSIX ☺

❖ Takes in an array of two integers, and sets each integer to
be a file descriptor corresponding to an “end” of the pipe

❖ pipefd[0] is the reading end of the pipe

❖ pipefd[1] is the writing end of the pipe

❖ In addition to copying memory, fork copies open files (and
pipes)

❖ Exec does NOT reset open files
37

int pipe(int pipefd[2]);

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Pipe Visualization

❖ A pipe can be thought of as a "file" that has distinct file
descriptors for reading and writing. This "file" only exists
as long as the pipe exists and is maintained by the OS.

▪ Data written to the pipe is stored in a
buffer until it is read from the pipe

38

Terminal input

Terminal output

Kernel

Pipe Buffer

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Lecture Outline

❖ fork() and wait()

❖ stdin, stdout, and the file table

❖ exec*() and pipe()

❖ HW4 Overview & Hints

39

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Unix Shell Commands

❖ Commands can also specify flags
▪ E.g. "ls -l" lists the files in the specified directory in a more

verbose format

❖ Revisiting the design philosophy:

▪ Programs should "Do One Thing And Do It Well."

▪ Programs should be written to work together

▪ Write programs that handle text streams, since text streams is a
universal interface.

❖ These programs can be easily combined with UNIX Shell
operators to solve more interesting problems

40

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Unix Shell Control Operators: Pipe

❖ cmd1 | cmd2, creates a pipe so that the stdout of
cmd1 is redirected to the stdin of cmd2
▪ E.g. "history | grep valgrind“

41

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Demo

❖ In HW4, you will be writing your own shell that reads
from user input

▪ Each line is a command that could consist of multiple programs
and pipes between them

▪ Your shell should fork a process to run each program and setup
the pipes in between them

❖ Some sample programs provided to help with
implementation ideas.

42

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

Suggested Approach

❖ HIGHLY ENCOURAGED to follow the suggested approach

▪ Write a program that acts similarly to stdin_echo.cc

▪ Write a program that can handle commands with no pipes

• "ls"

▪ Add support for command line arguments

• "ls -l"

▪ Add support for commands with ONE pipe

• "ls -l | wc"

▪ Generalize to add support for any number of pipes

• "ls –l | wc | cat"

43

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line

❖ Consider the case when a user inputs
▪ "ls"

44

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line

❖ Consider the case when a user inputs
▪ "ls"

45

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});

Terminal

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Hints

❖ If there are n commands in a line, there should be n-1
pipes

❖ Each pipe should be written to by exactly one process

❖ Each pipe should be read by exactly one process

▪ Different than the one writing

❖ There are three cases to consider for commands using
pipes

▪ The first process, which reads from stdin and writes out to a pipe

▪ The last process, which reads from a pipe and writes to stdout

▪ Processes in between which read from one pipe and write to
another

❖ More hints when HW is posted 46

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

47

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", …);

Kernel

Pipe Buffer

Terminal

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

48

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

49

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

50

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

51

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

52

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

53

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

54

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

55

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

56

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

57

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

58

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

59

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

60

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("wc", …);

CIT 5950, Spring 2023L17: Fork & PipeUniversity of Pennsylvania

HW4 Example Line 2

❖ Consider the case when a user inputs
▪ "ls | wc | cat"

62

Overall parent

Running main()
or helper_fnct()fork()

child

execvp("ls", …);
Kernel

Pipe Buffer

Terminal

Pipe Buffer

fork()

child

execvp("wc", …);

fork()
child

execvp("cat", …);

	Default Section
	Slide 1: Fork & Pipe Computer Systems Programming, Spring 2023
	Slide 2: Logistics
	Slide 3: Lecture Summary
	Slide 4: Some Important Smart Pointer Methods
	Slide 5: “Smart” Pointers
	Slide 6: Using a non-heap pointer
	Slide 7: Re-using a raw pointer
	Slide 8: Re-using a raw pointer
	Slide 9: Re-using a raw pointer: Fixed Code
	Slide 10: Lecture Outline
	Slide 11
	Slide 12: Review: Address Spaces
	Slide 13: Creating New Processes
	Slide 14: fork() and Address Spaces
	Slide 15: fork()
	Slide 16: fork()
	Slide 17: fork()
	Slide 18: fork() example
	Slide 19: fork() example
	Slide 20: fork() example
	Slide 21: fork() example
	Slide 22: Exiting a Process
	Slide 23: "join"-ing a Process
	Slide 24: Demo: fork_example
	Slide 25
	Slide 26: Lecture Outline
	Slide 27: stdout, stdin, stderr
	Slide 28: stdout, stdin, stderr
	Slide 29: File Descriptor Table
	Slide 30: Redirecting stdin/out/err
	Slide 31
	Slide 32: Lecture Outline
	Slide 33: exec*()
	Slide 34: execvp()
	Slide 35: Exec Visualization
	Slide 36: Exec Demo
	Slide 37: Pipes
	Slide 38: Pipe Visualization
	Slide 39: Lecture Outline
	Slide 40: Unix Shell Commands
	Slide 41: Unix Shell Control Operators: Pipe
	Slide 42: HW4 Demo
	Slide 43: Suggested Approach
	Slide 44: HW4 Example Line
	Slide 45: HW4 Example Line
	Slide 46: HW4 Hints
	Slide 47: HW4 Example Line 1
	Slide 48: HW4 Example Line 1
	Slide 49: HW4 Example Line 1
	Slide 50: HW4 Example Line 1
	Slide 51: HW4 Example Line 1
	Slide 52: HW4 Example Line 1
	Slide 53: HW4 Example Line 1
	Slide 54: HW4 Example Line 1
	Slide 55: HW4 Example Line 1
	Slide 56: HW4 Example Line 1
	Slide 57: HW4 Example Line 1
	Slide 58: HW4 Example Line 1
	Slide 59: HW4 Example Line 1
	Slide 60: HW4 Example Line 1
	Slide 62: HW4 Example Line 2

