Fork & Pipe Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Mati Davis Chandravaran Kunjeti Shufan Liu Jialin Cai Donglun He Heyi Liu Eddy Yang

Logistics

- HW3 Posted
 Due Thursday 3/30 @ 11:59
 - Should have everything you need
 - Should be on the shorter side theoretically

- Check-in 07 to be released today/tomorrow
 - Due Before Monday's lecture
- Project Partner Sign up to be released soon

Lecture Summary

- * A unique_ptr takes ownership of a pointer
 - Cannot be copied, but can be moved
 - get() returns a copy of the pointer, but is dangerous to use; better to use release() instead
 - reset() deletes old pointer value and stores a new one
- A shared_ptr allows shared objects to have multiple owners by doing *reference counting*
 - deletes an object once its reference count reaches zero
- A weak_ptr works with a shared object but doesn't affect the reference count
 - Can't actually be dereferenced, but can check if the object still exists and can get a shared_ptr from the weak_ptr if it does

Some Important Smart Pointer Methods

Visit <u>http://www.cplusplus.com/</u> for more information on these!

- * std::unique_ptr U;
 - U.get()
 Returns the raw pointer U is managing
 - U.release() U stops managing its raw pointer and returns the raw pointer
 - U.reset(q)
 U cleans up its raw pointer and takes ownership of q
- * std::shared_ptr S;
 - S.get()
 Returns the raw pointer S is managing
 - S.use_count() Returns the reference count
 - S.unique()
 Returns true iff S.use_count() == 1
- std::weak_ptr W;
 - W.lock() Constructs a shared pointer based off of W and returns it
 - W.use_count() Returns the reference count
 - W.expired()
 Returns true iff W is expired (W.use_count() == 0)

"Smart" Pointers

- Smart pointers still don't know everything, you must be careful with what pointers you give it to manage.
 - Smart pointers can't tell if a pointer is on the heap or not.
 - Still uses delete on default.
 - Smart pointers can't tell if you are re-using a raw pointer.

Using a non-heap pointer

```
#include <cstdlib>
#include <memory>
using std::shared_ptr;
```

```
using std::weak_ptr;
```

```
int main(int argc, char **argv) {
    int x = 333;
```

```
shared_ptr<int> p1(&x);
```

```
return EXIT_SUCCESS;
```

}

- Smart pointers can't tell if the pointer you gave points to the heap!
 - Will still call delete on the pointer when destructed.

Re-using a raw pointer

```
#include <cstdlib>
#include <memory>
```

```
using std::unique_ptr;
```

```
int main(int argc, char **argv) {
    int *x = new int(333);
```

```
unique_ptr<int> p1(x);
```

```
unique_ptr<int> p2(x);
```

```
return EXIT_SUCCESS;
```

Smart pointers can't tell if you are re-using a raw pointer.

Re-using a raw pointer

```
#include <cstdlib>
#include <memory>
```

```
using std::shared ptr;
```

```
int main(int argc, char **argv) {
    int *x = new int(333);
```

```
shared_ptr<int> p1(x); // ref count:
```

```
shared_ptr<int> p2(x); // ref count:
```

```
return EXIT SUCCESS;
```


Smart pointers can't tell if you are re-using a raw pointer.

Re-using a raw pointer: Fixed Code

#include <cstdlib>
#include <memory>

```
using std::shared_ptr;
```

int main(int argc, char **argv) {
 int *x - new int(333);

shared ptr<int> p1(new int(333));

```
shared_ptr<int> p2(p1); // ref count:
```

```
return EXIT SUCCESS;
```

- Smart pointers can't tell if you are re-using a raw pointer.
 - Takeaway: be careful!!!!
 - Safer to use cctor
 - To be extra safe, don't have a raw pointer variable!

Lecture Outline

- * fork() and wait()
- stdin, stdout, and the file table
- * exec*() and pipe()
- HW4 Overview & Hints

pollev.com/tqm

Any questions from the check-in before we begin?

Review: Address Spaces

- A process has its own address space
 - Includes segments for different parts of memory
 - A process usually has one or more threads
 - A thread tracks its current state using the stack pointer (SP) and program counter (PC)
- New processes are created with:

pid_t fork();

Creating New Processes

pid_t fork();

- Creates a new process (the "child") that is an *exact clone** of the current process (the "parent")
 - *almost everything
- The new process has a separate virtual address space from the parent

fork() and Address Spaces

- Fork causes the OS to clone the address space
 - The *copies* of the memory segments are (nearly) identical
 - The new process has copies of the parent's data, stack-allocated variables, open file descriptors, etc.

fork()

- s fork() has peculiar semantics
 - The parent invokes fork ()
 - The OS clones the parent
 - Both the parent and the child return from fork
 - Parent receives child's pid
 - Child receives a 0

fork()

- s fork() has peculiar semantics
 - The parent invokes **fork** ()
 - The OS clones the parent
 - Both the parent and the child return from fork
 - Parent receives child's pid
 - Child receives a 0

fork()

- s fork() has peculiar semantics
 - The parent invokes fork ()
 - The OS clones the parent
 - Both the parent and the child return from fork
 - Parent receives child's pid
 - Child receives a 0

fork() example

```
cout << "Hello!" << endl;
pid_t fork_ret = fork();
int x;
if (fork_ret == 0) {
    x = 595;
} else {
    x = 593;
}
cout << x << endl;</pre>
```

Always prints "Hello"

fork() example

```
cout << "Hello!" << endl;
pid_t fork_ret = fork();
int x;
if (fork_ret == 0) {
    x = 595;
} else {
    x = 593;
}
cout << x << endl;</pre>
```

Always prints "Hello"

fork() example Child Process (PID = Y) Parent Process (PID = X) cout << "Hello!" << endl;</pre> cout << "Hello!" << endl;</pre> >pid t fork ret = fork(); pid t fork ret = fork(); int x; int x; if (fork ret == 0) { if (fork ret == 0) { x = 595;x = 595;} else { } else { x = 593;x = 593;} } cout << x << endl; cout << x << endl;</pre> fork ret = 0fork ret = Yfork()

Always prints "Hello"

Does NOT print "Hello"

fork() example

Parent Process (PID = X)

Always prints "Hello" Always prints "593"

Always prints "595"

Child Process (PID = Y)

Exiting a Process

void exit(int status);

- Causes the current process to exit normally
- Automatically called by main () when main returns
- Exits with a return status (e.g. EXIT_SUCCESS or EXIT_FAILURE)
 - This is the same int returned by main ()
- The exit status is accessible by the parent process with wait() or waitpid().

"join"-ing a Process

- - The "process equivalent" of pthread_join()
 - Calling process waits for a child process (specified by pid) to exit
 - Also cleans up the child process
 - Gets the exit status of child process through output parameter wstatus
 - options are optional, pass in 0 for default options in most cases
 - Returns process ID of child who was waited for or -1 on error
- pid_t wait(int *wstatus);
 - Equivalent of waitpid, but waits for ANY child

Demo: fork_example

- * See fork_example.cc
 - Brief code demo to see the various states of a process
 - Running
 - Zombie
 - Terminated
 - Makes use of sleep(), waitpid() and exit()!

pollev.com/tqm

We've briefly mentioned that it is *possible* to have two processes share information. How could this be done?

Lecture Outline

- fork() and wait()
- stdin, stdout, and the file table
- * exec*() and pipe()
- HW4 Overview & Hints

stdout, stdin, stderr

- By default, there are three "files" open when a program starts
 - stdin: for reading terminal input typed by a user
 - cin **in C++**
 - System.in in Java
 - stdout: the normal terminal output.
 - cout in C++
 - System.out in Java
 - stderr: the terminal output for printing errors
 - cerrinC++
 - System.err in Java

stdout, stdin, stderr

- stdin, stdout, and stderr all have initial file descriptors
 constants defined in unistd.h
 - STDIN FILENO -> 0
 - STDOUT FILENO -> 1
 - STDERR_FILENO -> 2
- These will be open on default for a process
- Printing to stdout with cout will use
 write(STDOUT_FILENO, ...)

File Descriptor Table

- In addition to an address space, each process will have it's own file descriptor table managed by the OS
- The table is just an array, and the file descriptor is an index into it.

Redirecting stdin/out/err

- We can change things so that STDOUT_FILENO is associated with something other than a terminal output.
- Now, any calls to printf, cout, System.out, etc now go to the redirected output Terminal input

pollev.com/tqm

 Given the following code, what is the contents of "hello.txt" and what is printed to stdout?

```
int main() {
 9
     int fd = open("hello.txt", 0 WRONLY);
10
11
12
     printf("hi\n");
13
14
     close(STDOUT FILENO);
15
16
     printf("?\n");
17
18
     // open `fd` on `stdout`
19
     dup2(fd, STDOUT FILENO);
20
21
     printf("!\n");
22
23
     close(fd);
24
25
     printf("*\n");
26
27 }
```

Lecture Outline

- fork() and wait()
- stdin, stdout, and the file table
- * exec*() and pipe()
- HW4 Overview & Hints

- Loads in a new program for execution
- PC, SP, registers, and memory are all reset so that the specified program can run

execvp()

- Duplicates the action of the shell (terminal) in terms of finding the command/program to run
- Argv is an array of char*, the same kind of argv that is passed to main() in a C/C++ program
 - **argv[0]** MUST have the same contents as the file parameter
 - **argv** must have NULL/nullptr as the last entry of the array
- Returns -1 on error. Does NOT return on success

Exec Visualization

Exec takes a process and discards or "resets" most of it

NOTE that the following DO change

- The stack
- The heap
- Globals
- Loaded code
- Registers

NOTE that the following do NOT change

- Process ID
- Open files
- The kernel

Exec Demo

- * See exec example.cc
 - Brief code demo to see how exec works
 - What happens when we call exec?
 - What happens if we open some files before exec?
 - What happens if we replace stdout with a file?

 NOTE: When a process exits, then it will close all of its open files by default

Pipes

int pipe(int pipefd[2]);

- Creates a unidirectional data channel for IPC
- ✤ Communication through file descriptors! // POSIX ☺
- Takes in an array of two integers, and sets each integer to be a file descriptor corresponding to an "end" of the pipe
- * pipefd[0] is the reading end of the pipe
- * pipefd[1] is the writing end of the pipe
- In addition to copying memory, fork copies open files (and pipes)
- Exec does NOT reset open files

Pipe Visualization

- A pipe can be thought of as a "file" that has distinct file descriptors for reading and writing. This "file" only exists as long as the pipe exists and is maintained by the OS.
 - Data written to the pipe is stored in a Terminal input buffer until it is read from the pipe

Lecture Outline

- fork() and wait()
- stdin, stdout, and the file table
- * exec*() and pipe()
- HW4 Overview & Hints

Unix Shell Commands

- Commands can also specify flags
 - E.g. "ls -l" lists the files in the specified directory in a more verbose format
- Revisiting the design philosophy:
 - Programs should "Do One Thing And Do It Well."
 - Programs should be written to work together
 - Write programs that handle text streams, since text streams is a universal interface.
- These programs can be easily combined with UNIX Shell operators to solve more interesting problems

Unix Shell Control Operators: Pipe

- * cmd1 | cmd2, creates a pipe so that the stdout of cmd1 is redirected to the stdin of cmd2
 - E.g. "history | grep valgrind"

HW4 Demo

- In HW4, you will be writing your own shell that reads from user input
 - Each line is a command that could consist of multiple programs and pipes between them
 - Your shell should fork a process to run each program and setup the pipes in between them
- Some sample programs provided to help with implementation ideas.

Suggested Approach

- HIGHLY ENCOURAGED to follow the suggested approach
 - Write a program that acts similarly to stdin_echo.cc
 - Write a program that can handle commands with no pipes
 - "ls"
 - Add support for command line arguments
 - "ls -l"
 - Add support for commands with ONE pipe
 - "ls -l | wc"
 - Generalize to add support for any number of pipes
 - "ls -l | wc | cat"

- Consider the case when a user inputs
 - ∎ "ls"

- Consider the case when a user inputs
 - "ls"

HW4 Hints

- If there are n commands in a line, there should be n-1 pipes
- Each pipe should be written to by exactly one process
- Each pipe should be read by exactly one process
 - Different than the one writing
- There are three cases to consider for commands using pipes
 - The first process, which reads from stdin and writes out to a pipe
 - The last process, which reads from a pipe and writes to stdout
 - Processes in between which read from one pipe and write to another
- More hints when HW is posted

- Consider the case when a user inputs
 - "ls | wc"

Consider the case when a user inputs

"ls | wc | cat"

