
CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Socket Programming
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

❖ Approximately how many internet connected devices do
you own?

2

pollev.com/tqm

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

❖ Which layer handles this problem?

❖ Host A tries to send a long message to Host B in another
city, broken up into many packets. A packet in the middle
does not arrive, so Host A sends it again.

3

pollev.com/tqm

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

❖ Which layer handles this problem?

❖ Host A tries to send a message to Host B, but Host C and
Host D are also trying to communicate on the same
network, so Host A has to avoid interfering

4

pollev.com/tqm

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Logistics

❖ HW3 Posted Due Thursday 3/30 @ 11:59

▪ Should have everything you need

▪ Should be on the shorter side theoretically

▪ Auto-grader to be released today

❖ Project Partner Sign up to be released TODAY

▪ Project Spec will be released with it to help make a decision

▪ Due Wednesday at midnight next week 4/5

❖ Final Exam Scheduling form out now, complete by tonight
@ midnight

5

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Lecture Outline

❖ Network Programming

▪ Sockets API

▪ Network Addresses

▪ DNS Lookup

6

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Files and File Descriptors

❖ Remember open(), read(), write(), and
close()?

▪ POSIX system calls for interacting with files

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and
close()

▪ Inside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as
the file position

7

Parameters to

Can’t be a

pointer, don’t

want to give

address to

kernel

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O
▪ You use read() and write() to communicate with remote

computers over the network!

▪ A file descriptor use for network communications is called a
socket

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the
OS know which network channel to use

8

In other words, we

specify the socket

to read/write on

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

File Descriptor Table

OS’s File Descriptor Table for the Process

File
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket
local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket
local: 128.95.4.33:80

remote: 102.12.3.4:5544

9

Web Server

in
d

ex
.h

tm
l

p
ic

.p
n

g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

Can have multiple

files and network

connections open
0,1,2 always start as

stdin, stdout & stderr.

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

10

What we will focus on

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

▪ Can also be used for other forms of communication like peer-to-
peer

1) Establish connection:

2) Communicate:

3) Close connection:

11

client server

client server

client server

Client reaches out
Server is “passive” &

listens for clients

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used less frequently

▪ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

12

host

host host

host

host

host host

host

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

13

Can still use these in C++ code

You’ll see some C-idioms and design practices.

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Socket API: Client TCP Connection

❖ We’ll start by looking at the API from the point of view of
a client connecting to a server over TCP

❖ There are five steps:

1) Figure out the IP address and port to which to connect

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

14

Same as

file I/O

New

stuff

** Today **

Good Breakdown of this entire

process in section tomorrow

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 1: Figure Out IP Address and Port

❖ Several parts:

▪ Network addresses

▪ Data structures for address info

▪ DNS (Domain Name System) – finding IP addresses

15

C data structures

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

IPv4 Network Addresses

❖ An IPv4 address is a 4-byte tuple

▪ For humans, written in “dotted-decimal notation”

▪ e.g. 128.95.4.1 (80:5f:04:01 in hex)

❖ IPv4 address exhaustion

▪ There are 232 ≈ 4.3 billion IPv4 addresses

▪ There are ≈ 7.77 billion people in the world (February 2020)

16

(232 addresses)

How many internet connected devices do each of us have?

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets

• Double-colon replaces consecutive sections of zeros

▪ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33

• Shorthand: 2d01:db8:f188::1f33

▪ Transition is still ongoing

• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache

17

(2128 addresses ~about 3.4×1038)

2 rules for

human

readability

1

2

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Linux Socket Addresses

❖ Structures, constants, and helper functions available in
#include <arpa/inet.h>

❖ Addresses stored in network byte order (big endian)

❖ Converting between host and network byte orders:
▪ uint32_t htonl(uint32_t hostlong);

▪ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order

• Also versions with ‘s’ for short (uint16_t instead)

❖ How to handle both IPv4 and IPv6?

▪ Use C structs for each, but make them somewhat similar

▪ Use defined constants to differentiate when to use each:
AF_INET for IPv4 and AF_INET6 for IPv6

18

First field in

a struct is

always an

ID

“AF” = Address Family

(other types of sockets

exist, not just ipv4 & ipv6)

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

IPv4 Address Structures

19

// IPv4 4-byte address

struct in_addr {

uint32_t s_addr; // Address in network byte order

};

// An IPv4-specific address structure

struct sockaddr_in {

sa_family_t sin_family; // Address family: AF_INET

in_port_t sin_port; // Port in network byte order

struct in_addr sin_addr; // IPv4 address

unsigned char sin_zero[8]; // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:

160 2 4 8

Always big endian

should always be AF_INET

(2 bytes)

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Practice Question

❖ Assume we have a struct sockaddr_in that
represents a socket connected to 198.35.26.96
(c6:23:1a:60) on port 80 (0x50) stored on a little-endian
machine.
▪ AF_INET = 2

▪ Fill in the bytes in memory below (in hex):

20

0

8

sin_family sin_port sin_addr

02 00 00 50 C6 23 1A 60

00 00 00 00 00 00 00 00 zeroes

(host) (network) (network)

(host)

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

IPv6 Address Structures

21

// IPv6 16-byte address

struct in6_addr {

uint8_t s6_addr[16]; // Address in network byte order

};

// An IPv6-specific address structure

struct sockaddr_in6 {

sa_family_t sin6_family; // Address family: AF_INET6

in_port_t sin6_port; // Port number

uint32_t sin6_flowinfo; // IPv6 flow information

struct in6_addr sin6_addr; // IPv6 address

uint32_t sin6_scope_id; // Scope ID

};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28

should always be AF_INET6

Can ignore

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Generic Address Structures

▪ Commonly create struct sockaddr_storage, then pass
pointer cast as struct sockaddr* to connect()

22

// A mostly-protocol-independent address structure.

// Pointer to this is parameter type for socket system calls.

struct sockaddr {

sa_family_t sa_family; // Address family (AF_* constants)

char sa_data[14]; // Socket address (size varies

// according to socket domain)

};

// A structure big enough to hold either IPv4 or IPv6 structs

struct sockaddr_storage {

sa_family_t ss_family; // Address family

// padding and alignment; don’t worry about the details

char __ss_pad1[_SS_PAD1SIZE];

int64_t __ss_align;

char __ss_pad2[_SS_PAD2SIZE];

};

Family is always first to identify the socket type

struct sockaddr*

struct sockaddr

isn’t big enough for

ipv6

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts human-readable string representation (“presentation”)
to network byte ordered address

▪ Returns 1 (success), 0 (bad src), or -1 (error)

23

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in sa; // IPv4

struct sockaddr_in6 sa6; // IPv6

// IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).

inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr_in6.

inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

return EXIT_SUCCESS;

}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);

Address family String representation

Addr destination:

struct in_addr*

// or

struct in_6addr*

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts network addr in src into buffer dst of size size

▪ Returns dst on success; NULL on error

24

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in6 sa6; // IPv6

char astring[INET6_ADDRSTRLEN]; // IPv6

// IPv6 string to sockaddr_in6.

inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

// sockaddr_in6 to IPv6 string.

inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);

std::cout << astring << std::endl;

return EXIT_SUCCESS;

}

genstring.cc

const char* inet_ntop(int af, const void* src,

char* dst, socklen_t size);

Address family

Addr src:

struct in_addr*

// or

struct in_6addr*

If converting ipv4:

INET_ADDRSTRLEN

// 2001:0db8:63b3:1::3490

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Domain Name System

❖ People tend to use DNS names, not IP addresses

▪ The Sockets API lets you convert between the two

▪ It’s a complicated process, though:

• A given DNS name can have many IP addresses

• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

❖ You can use the Linux program “dig” to explore DNS

▪ dig @server name type (+short)

• server: specific name server to query

• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

25

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

DNS Hierarchy

26

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Resolving DNS Names

❖ The POSIX way is to use getaddrinfo()

▪ A complicated system call found in #include <netdb.h>

▪ Basic idea:

• Tell getaddrinfo() which host and port you want resolved

– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected

• getaddrinfo() gives you a list of results packed into an
“addrinfo” structure/linked list

– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo later using freeaddrinfo()

27

int getaddrinfo(const char* hostname,

const char* service,

const struct addrinfo* hints,

struct addrinfo** res);
Output param

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

getaddrinfo

❖ getaddrinfo() arguments:

▪ hostname – domain name or IP address string

▪ service – port # (e.g. "80") or service name (e.g. "www")
or NULL/nullptr

▪

28

struct addrinfo {

int ai_flags; // additional flags

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

size_t ai_addrlen; // length of socket addr in bytes

struct sockaddr* ai_addr; // pointer to socket addr

char* ai_canonname; // canonical name

struct addrinfo* ai_next; // can form a linked list

};

Hints Parameter

Can use 0 or nullptr to

indicate you don’t want to

filter results on that

characteristic

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

DNS Lookup Procedure

1) Create a struct addrinfo hints

2) Zero out hints for “defaults”

3) Set specific fields of hints as desired

4) Call getaddrinfo() using &hints

5) Resulting linked list res will have all fields appropriately set

❖ See dnsresolve.cc
29

struct addrinfo {

int ai_flags; // additional flags

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

size_t ai_addrlen; // length of socket addr in bytes

struct sockaddr* ai_addr; // pointer to socket addr

char* ai_canonname; // canonical name

struct addrinfo* ai_next; // can form a linked list

};

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

30

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

31

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char** argv) {

int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

if (socket_fd == -1) {

std::cerr << strerror(errno) << std::endl;

return EXIT_FAILURE;

}

close(socket_fd);

return EXIT_SUCCESS;

}

socket.cc

// check for error

// clean up

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to
a remote host

▪

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures
returned by getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

• This involves ~2 round trips across the network

32

int connect(int sockfd, const struct sockaddr* addr,

socklen_t addrlen);

result from socket()

result from getaddrinfo()

Waits on an event before returning

Performs a “Handshake”

With the server

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Connect Example

❖ See connect.cc

33

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

cerr << "socket() failed: " << strerror(errno) << endl;

return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

reinterpret_cast<sockaddr*>(&addr),

addrlen);

if (res == -1) {

cerr << "connect() failed: " << strerror(errno) << endl;

}

// Helper function that calls

// getaddrinfo()

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 4: read()

❖ If there is data that has already been received by the
network stack, then read will return immediately with it
▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read()
will block until something arrives

▪ How might this cause deadlock?

▪ Can read() return 0?

34

Yes, connection could close and 0 is returned

If both server and client try to read with no data sent

errno

==

EINTR

Return Value

0-1 > 0

read()

other

errno

==

count

<

count

You’re

done!

Keep

reading

Error msg,

exit

Try

again!

Closed connection

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 4: write()

❖ write() queues your data in a send buffer in the OS
and then returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet
received the data!

❖ If there is no more space left in the send buffer, by default
write() will block

35

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

❖ When we call write(), what data do we need to pass to
it when writing over the network?

A. Any data our application needs to send

B. All of the above + TCP info
(sequence number, port, …)

C. All of the above + IP info
(source & dest IP addresses…)

D. All of the above + Ethernet info
(source & dest MAC addresses)

E. We’re lost…
36

pollev.com/tqm

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

❖ When we call write(), what data do we need to pass to
it when writing over the network?

A. Any data our application needs to send

B. All of the above + TCP info
(sequence number, port, …)

C. All of the above + IP info
(source & dest IP addresses…)

D. All of the above + Ethernet info
(source & dest MAC addresses)

E. We’re lost…
37

POSIX Sockets is an interface

for using the transport layer.

Information about transport

layer + below are abstracted

away & handled for us.

pollev.com/tqm

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Read/Write Example

❖ See sendreceive.cc

38

while (1) {

int wres = write(socket_fd, readbuf, res);

if (wres == 0) {

cerr << "socket closed prematurely" << endl;

close(socket_fd);

return EXIT_FAILURE;

}

if (wres == -1) {

if (errno == EINTR)

continue;

cerr << "socket write failure: " << strerror(errno) << endl;

close(socket_fd);

return EXIT_FAILURE;

}

break;

}

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

39

int close(int fd);

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Socket API: Server TCP Connection

❖ Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen

2) Create a socket

3) bind() the socket to the address(es) and port

4) Tell the socket to listen() for incoming clients

5) accept() a client connection

6) .read() and write() to that connection

7) close() the client socket

40

Analogy: opening a (boba) shop!

Finding a

good location

Building the store

Advertising the store

Open shop!

Next customer in line, Please!

Transaction occurs

Customer leaves shop

or refuse service

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Servers

❖ Servers can have multiple IP addresses (“multihoming”)

▪ Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)

❖ The goals of a server socket are different than a client
socket

▪ Want to bind the socket to a particular port of one or more IP
addresses of the server

▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

41

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be
needed (but we’ll use it)

▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation

• Even if the machine has a static IP address, don’t wire it into the code
– either look it up dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags

• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

42

Common and hard to find bug

is forgetting to set this

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 2: Create a Socket

❖ Step 2: socket() call is same as before

▪ Can directly use constants or fields from result of
getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port
are not associated with socket yet

43

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 3: Bind the socket

❖

▪ Looks nearly identical to connect()!

▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:

▪ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?

• POSIX systems can handle IPv4 clients via IPv6 ☺

▪ Port: port in network byte order (htons() is handy)

▪ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

44

int bind(int sockfd, const struct sockaddr* addr,

socklen_t addrlen);

We’ll just pass in results from

getaddrinfo() & socket()

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 4: Listen for Incoming Clients

❖

▪ Tells the OS that the socket is a listening socket that clients can
connect to

▪ backlog: maximum length of connection queue

• Gets truncated, if necessary, to defined constant SOMAXCONN

• The OS will refuse new connections once queue is full until server
accept()s them (removing them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen()
returns

• Server can’t use a connection until you accept() it

45

int listen(int sockfd, int backlog);

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Example #1

❖ See server_bind_listen.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections for
20 seconds

• Can connect to it using netcat (nc)

46

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Step 5: Accept a Client Connection

❖

▪ Returns an active, ready-to-use socket file descriptor connected
to a client (or -1 on error)

• sockfd must have been created, bound, and listening

• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters

• *addrlen should initially be set to sizeof(*addr), gets
overwritten with the size of the client address

• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address

– Use getnameinfo() to do a reverse DNS lookup on the client

47

int accept(int sockfd, struct sockaddr* addr,

socklen_t* addrlen);

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Example #2

❖ See server_accept_rw_close.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Accepts connections as they come

▪ Echoes any data the client sends to it on stdout and also sends
it back to the client

48

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Something to Note

❖ Our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the
connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are
stuck waiting for it

49

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Multithreaded Server

50

client

server

accept()

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Multithreaded Server

51

client

server

pthread_create()

pthread_detach()

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Multithreaded Server

52

client

server

accept()

client

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Multithreaded Server

53

client

client

server

pthread_create()

CIT 5950, Spring 2023L19: POSIX SocketsUniversity of Pennsylvania

Multithreaded Server

54

client

client

client

client

client

client
server

shared
data

structures

	Default Section
	Slide 1: Socket Programming Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Logistics
	Slide 6: Lecture Outline
	Slide 7: Files and File Descriptors
	Slide 8: Networks and Sockets
	Slide 9: File Descriptor Table
	Slide 10: Types of Sockets
	Slide 11: Stream Sockets
	Slide 12: Datagram Sockets
	Slide 13: The Sockets API
	Slide 14: Socket API: Client TCP Connection
	Slide 15: Step 1: Figure Out IP Address and Port
	Slide 16: IPv4 Network Addresses
	Slide 17: IPv6 Network Addresses
	Slide 18: Linux Socket Addresses
	Slide 19: IPv4 Address Structures
	Slide 20: Practice Question
	Slide 21: IPv6 Address Structures
	Slide 22: Generic Address Structures
	Slide 23: Address Conversion
	Slide 24: Address Conversion
	Slide 25: Domain Name System
	Slide 26: DNS Hierarchy
	Slide 27: Resolving DNS Names
	Slide 28: getaddrinfo
	Slide 29: DNS Lookup Procedure
	Slide 30: Socket API: Client TCP Connection
	Slide 31: Step 2: Creating a Socket
	Slide 32: Step 3: Connect to the Server
	Slide 33: Connect Example
	Slide 34: Step 4: read()
	Slide 35: Step 4: write()
	Slide 36
	Slide 37
	Slide 38: Read/Write Example
	Slide 39: Step 5: close()
	Slide 40: Socket API: Server TCP Connection
	Slide 41: Servers
	Slide 42: Step 1: Figure out IP address(es) & Port
	Slide 43: Step 2: Create a Socket
	Slide 44: Step 3: Bind the socket
	Slide 45: Step 4: Listen for Incoming Clients
	Slide 46: Example #1
	Slide 47: Step 5: Accept a Client Connection
	Slide 48: Example #2
	Slide 49: Something to Note
	Slide 50: Multithreaded Server
	Slide 51: Multithreaded Server
	Slide 52: Multithreaded Server
	Slide 53: Multithreaded Server
	Slide 54: Multithreaded Server

