
CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP & exec
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

❖ Any questions from previous lectures?

2

pollev.com/tqm

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Logistics

❖ HW3 Posted Due Tonight 4/3 @ 11:59

▪ Should have everything you need

▪ Should be on the shorter side theoretically

❖ Project Partner Sign Up: Due Wednesday at midnight

▪ Project spec is up

❖ Final Exam Scheduling:

▪ 96 hours (4 days)

▪ Opens Tuesday May 1st @ Noon

▪ Closes Saturday May 6th @ noon

3

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Lecture Outline

❖ Project Demo

❖ HTTP

❖ Fork, Pipe, Exec Review

4

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Project: Multi-threaded Search Server

❖ Components:

▪ Read files and store them into an index

▪ Setup a TCP Server Socket

▪ Read & Parse HTTP Requests

▪ Handle HTTP Requests & send the appropriate response back

❖ Demo: Searching, URL, URI

5

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Lecture Outline

❖ Project Demo

❖ HTTP

❖ Fork, Pipe, Exec Review

6

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Basics

❖ A client establishes one or more TCP connections to a
server

▪ The client sends a request for a web object over a connection and
the server replies with the object’s contents

❖ We have to figure out how to let the client and server
communicate their intentions to each other clearly

▪ We have to define a protocol

7

“I’d like index.html”

“Found it, here it is: (index.html)”

HTTP is part of the application layer

built on top of transport layer

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Protocols

❖ A protocol is a set of rules governing the format and
exchange of messages in a computing system

▪ What messages can a client exchange with a server?

• What is the syntax of a message?

• What do the messages mean?

• What are legal replies to a message?

▪ What sequence of messages are legal?

• How are errors conveyed?

❖ A protocol is (roughly) the network equivalent of an API

8

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP

❖ Hypertext Transport Protocol

▪ A request / response protocol

• A client (web browser) sends a request to a web server

• The server processes the request and sends a response

▪ Typically, a request asks a server to retrieve a resource

• A resource is an object or document, named by a Uniform Resource
Identifier (URI)

▪ A response indicates whether or not the server succeeded

• If so, it provides the content of the requested response

▪ More info: https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

9

e.g. a

webpage,

image, etc

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Requests

❖ General form:
▪ [METHOD] [request-uri] HTTP/[version]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

10

Type of Action to take

Resource to act on
In this class, 1.1

Any# of headers

(designed for

flexibility)

Blank line

to indicate

the end of

the

headers.
\r\n is used to indicate a

“new line” in HTTP

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

11

GET:

REQUEST

RESPONSE

HEADERS

BODY

HEADERS

CLIENT
(Web Browser)

SERVER

Used in the

project

The requested

resource

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

12

POST:

REQUEST

RESPONSE

HEADERS

BODY

HEADERS

CLIENT
(Web Browser)

SERVER

Data to

submit

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

• Doesn’t send resource; often to check if cached copy is still valid

13

HEAD:

REQUEST

RESPONSE

HEADERS

HEADERS

CLIENT
(Web Browser)

SERVER

Resource

not sent

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Methods

❖ There are three commonly-used HTTP methods:
▪ GET: “Please send me the named resource”

▪ POST: “I’d like to submit data to you” (e.g. file upload)

▪ HEAD: “Send me the headers for the named resource”

• Doesn’t send resource; often to check if cached copy is still valid

❖ Other methods exist, but are much less common:
▪ PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH, ...

• For instance: TRACE – “show any proxies or caches in between me
and the server”

14

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Uniform Resource Identifier (URI)

❖ Absolute URI
▪ Composition: scheme:[//authority]path[?query]

▪ Mainly used for communicating via proxy

❖ Most common form of Request-URI
▪ Composition: path[?query]

▪ Host is specified through headers

▪ Query is optional

▪ Path can be empty (just /)

❖ Example Request-URI:

▪ /static/test_tree/books/artofwar.txt?terms=hello

16

path query

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Versions

❖ All current browsers and servers “speak” HTTP/1.1

▪ Version 1.1 of the HTTP protocol

• https://www.w3.org/Protocols/rfc2616/rfc2616.html

▪ Standardized in 1997 and meant to fix shortcomings of HTTP/1.0

• Better performance, richer caching features, better support for
multihomed servers, and much more

❖ HTTP/2 standardized recently (published in 2015)

▪ Allows for higher performance but doesn’t change the basic web
request/response model

▪ Will coexist with HTTP/1.1 for a long time

17

Hard to change/force a switch

in the “wild”

https://www.w3.org/Protocols/rfc2616/rfc2616.html

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Client Headers

❖ The client can provide one or more request “headers”

▪ These provide information to the server or modify how the server
should process the request

❖ You’ll encounter many in practice

▪ https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

▪ Host: the DNS name of the server

▪ User-Agent: an identifying string naming the browser

▪ Accept: the content types the client prefers or can accept

▪ Cookie: an HTTP cookie previously set by the server

18

<- server my host multiple domains

Desktop vs.

mobile

https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

A Real Request

19

GET / HTTP/1.1

Host: breadsouth-turbopromo.codio.io:3333

Connection: keep-alive

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,

image/apng,*/*;q=0.8

DNT: 1

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Cookie: SESS0c8e598bbe17200b27e1d0a18f9a42bb=5c18d7ed6d369d56b69a1c0aa441d7

8f; SESSd47cbe79be51e625cab059451de75072=d137dbe7bbe1e90149797dcd89c639b1;

_sdsat_DMC_or_CCODE=null; _sdsat_utm_source=; _sdsat_utm_medium=; _sdsat_ut

m_term=; _sdsat_utm_content=; adblock=blocked; s_fid=50771A3AC73B3FFF-3F18A

ABD559FFB5D; s_cc=true; prev_page=science.%3A%2Fcontent%2F347%2F6219%2F262%

2Ftab-pdf; ist_usr_page=1; sat_ppv=79; ajs_anonymous_id=%229225b8cf-6637-49

c8-8568-ecb53cfc760c%22; ajs_user_id=null; ajs_group_id=null; __utma=598078

07.316184303.1491952757.1496310296.1496310296.1; __utmc=59807807; __utmc=80

...

request uri version

Keep connection alive after this request

Chrome windows desktop

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP Responses

❖ General form:
▪ HTTP/[version] [status code] [reason]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

20

A number
A Human

readable string

Typically the requested resource

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Status Codes and Reason

❖ Code: numeric outcome of the request – easy for
computers to interpret

▪ A 3-digit integer with the 1st digit indicating a response category

• 1xx: Informational message

• 2xx: Success

• 3xx: Redirect to a different URL

• 4xx: Error in the client’s request

• 5xx: Error experienced by the server

❖ Reason: human-readable explanation

▪ e.g. “OK” or “Moved Temporarily”

21

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Common Statuses

❖ HTTP/1.1 200 OK

▪ The request succeeded and the requested object is sent

❖ HTTP/1.1 404 Not Found

▪ The requested object was not found

❖ HTTP/1.1 301 Moved Permanently

▪ The object exists, but its name has changed

• The new URL is given as the “Location:” header value

❖ HTTP/1.1 500 Server Error

▪ The server had some kind of unexpected error

22

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Server Headers

❖ The server can provide zero or more response “headers”

▪ These provide information to the client or modify how the client
should process the response

❖ You’ll encounter many in practice

▪ https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

▪ Server: a string identifying the server software

▪ Content-Type: the type of the requested object

▪ Content-Length: size of requested object

▪ Last-Modified: a date indicating the last time the request
object was modified

23

How to interpret

resource

(image, text…)

When to stop reading

https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

A Real Response

24

HTTP/1.1 200 OK

Date: Mon, 21 May 2018 07:58:46 GMT

Server: Apache/2.2.32 (Unix) mod_ssl/2.2.32 OpenSSL/1.0.1e-fips

mod_pubcookie/3.3.4a mod_uwa/3.2.1 Phusion_Passenger/3.0.11

Last-Modified: Mon, 21 May 2018 07:58:05 GMT

ETag: "2299e1ef-52-56cb2a9615625"

Accept-Ranges: bytes

Content-Length: 82

Vary: Accept-Encoding,User-Agent

Connection: close

Content-Type: text/html

Set-Cookie:

bbbbbbbbbbbbbbb=DBMLFDMJCGAOILMBPIIAAIFLGBAKOJNNMCJIKKBKCDMDEJHMPONHCILPIBL

ADEAKCIABMEEPAOPMMKAOLHOKJMIGMIDKIHNCANAPHMFMBLBABPFENPDANJAPIBOIOOOD;

HttpOnly

<html><body>

Awesome!!

</body></html>

version status reason

Length of response body

Close connection after transaction

response body is the requested html page

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Cool HTTP/1.1 Features

❖ “Chunked Transfer-Encoding”

▪ A server might not know how big a response object is

• e.g. dynamically-generated content in response to a query or other
user input

▪ How do you send Content-Length?

• Could wait until you’ve finished generating the response, but that’s
not great in terms of latency – we want to start sending the response
right away

▪ Chunked message body: response is a series of chunks

25

This is extra
(non-testable)

material

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Cool HTTP/1.1 Features

❖ Persistent connections

▪ Establishing a TCP connection is costly

• Multiple network round trips to set up the TCP connection

• TCP has a feature called “slow start”; slowly grows the rate at which a
TCP connection transmits to avoid overwhelming networks

▪ A web page consists of multiple objects and a client probably
visits several pages on the same server

• Bad idea: separate TCP connection for each object

• Better idea: single TCP connection, multiple requests

26

This is extra
(non-testable)

material

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

20 years later…

❖ World has changed since HTTP/1.1 was adopted

▪ Web pages were a few hundred KB with a few dozen objects on
each page, now several MB each with hundreds of objects (JS,
graphics, …) & multiple domains per page

▪ Much larger ecosystem of devices (phones especially)

▪ Many hacks used to make HTTP/1.1 performance tolerable

• Multiple TCP sockets from browser to server

• Caching tricks; JS/CSS ordering and loading tricks; cookie hacks

• Compression/image optimizations; splitting/sharding requests

• etc., etc. …

27

This is extra
(non-testable)

material

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

HTTP/2

❖ Based on Google SPDY; standardized in 2015
▪ Binary protocol - easier parsing by machines (harder for humans);

sizes in headers, not discovered as requests are processed; …
• But same core request/response model (GET, POST, OK, …)

▪ Multiple data steams multiplexed on single TCP connections

▪ Header compression, server push, object priorities, more…

❖ All existing implementations incorporate TLS encryption
(https)

❖ Supported by all major browsers and servers since ~2015

❖ Used now by most major web sites
▪ Coexists with HTTP/1.1

▪ HTTP/2 used automatically when browser and server both
support it

28

This is extra
(non-testable)

material

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Polling Question

❖ Are the following statements True or False?

Q1 Q2

A. False False

B. False True

C. True False

D. True True

E. We’re lost…

29

Q1: A protocol only defines the
“syntax” that clients and servers
can communicate with.

Q2: Clients and servers use the
same header fields.

pollev.com/tqm

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Polling Question

❖ Are the following statements True or False?

Q1 Q2

A. False False

B. False True

C. True False

D. True True

E. We’re lost…

30

Q1: A protocol only defines the
“syntax” that clients and servers
can communicate with.

Q2: Clients and servers use the
same header fields.

Also the

semantics/meaning

pollev.com/tqm

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Polling Question

❖ Which HTTP status code family do you think the following
Reasons belong to?

Q1 Q2

A. 4xx 2xx

B. 4xx 3xx

C. 5xx 2xx

D. 5xx 3xx

E. We’re lost…

31

Q1: Gateway Time-out

Q2: No Content

pollev.com/tqm

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Polling Question

❖ Which HTTP status code family do you think the following
Reasons belong to?

Q1 Q2

A. 4xx 2xx

B. 4xx 3xx

C. 5xx 2xx

D. 5xx 3xx

E. We’re lost…

32

Q1: Gateway Time-out

Q2: No Content

1xx: info

2xx: success

3xx: redirect

4xx: client fail

5xx: server fail

Server acting as gateway timed out

Ok! Resource retrieved, but it is empty

pollev.com/tqm

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Lecture Outline

❖ Project Demo

❖ HTTP

❖ Fork, Pipe, Exec Review

33

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Exec Visualization

❖ Exec takes a process and discards or “resets” most of it

34

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

example.cc

other.cc

NOTE that the following
do NOT change
- Process ID
- Open files
- The kernel

NOTE that the following
DO change
- The stack
- The heap
- Globals
- Loaded code
- Registers

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Exec Demo

❖ See exec_example.cc

▪ Brief code demo to see how exec works

▪ What happens when we call exec?

▪ What happens if we open some files before exec?

▪ What happens if we replace stdout with a file?

❖ NOTE: When a process exits, then it will close all of its
open files by default

35

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Exec Demo

❖ See autograder.cc

▪ How could we take advantage of exec to do something useful?

▪ Combine usage of fork and exec so our program can do multiple
things

36

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

autograder.cc Trace

❖ First:
we compile the program with the g++ command

37

Overall parent

Running main()

Terminal

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

autograder.cc Trace

❖ First:
we compile the program with the g++ command

38

Overall parent

Running main()

Terminal

fork()

child

execvp("g++", …);

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

autograder.cc Trace

❖ First:
we compile the program with the g++ command

39

Overall parent

Running main()

Terminal

fork()

child

execvp("g++", …);

waitpid()

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

autograder.cc Trace

❖ Compilation done!
Run the compiled program

40

Overall parent

Running main()

Terminal

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

autograder.cc Trace

❖ Compilation done!
Run the compiled program

41

Overall parent

Running main()

Terminal

fork()

child

execvp("./hello", …);

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

autograder.cc Trace

❖ Compilation done!
Run the compiled program

42

Overall parent

Running main()

Terminal

fork()

child

execvp("./hello", …);

waitpid()

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

autograder.cc Trace

❖ Done?

43

Overall parent

Running main()

Terminal

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Pipe Visualization

❖ A pipe can be thought of as a "file" that has distinct file
descriptors for reading and writing. This "file" only exists
as long as the pipe exists and is maintained by the OS.

▪ Data written to the pipe is stored in a
buffer until it is read from the pipe

44

Terminal input

Terminal output

Kernel

Pipe Buffer

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

Exec & Pipe Demo

❖ See io_autograder.cc

▪ How could we take advantage of exec and pipe to do something
useful?

▪ Combine usage of fork and exec so our program can do multiple
things

45

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ First:
we compile the program with the g++ command

46

Overall parent

Running main()

Terminal

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ First:
we compile the program with the g++ command

47

Overall parent

Running main()

Terminal

fork()

child

execvp("g++", …);

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ First:
we compile the program with the g++ command

48

Overall parent

Running main()

Terminal

fork()

child

execvp("g++", …);

waitpid()

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

49

Overall parent

Running main()

Terminal

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

50

Overall parent

Running main()

Terminal

Kernel

Pipe BufferOne pipe to get input
to user program (numbers.cc)

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

51

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer
One pipe to get the output
from user program

One pipe to get input
to user program (numbers.cc)

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

52

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Fork to create the process
that willrun the student’s code

fork()

child

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

53

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
close write end of in_pipe

fork()

child

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

54

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
redirect so stdin refers to
read end of in_pipe

fork()

child

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

55

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
Close other access to
read end of in_pipe

fork()

child

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

56

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
Close read end of out_pipe

fork()

child

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

57

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

Child:
Redirect stdout to refer to the
write end of out_pipe

fork()

child

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

58

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

Child:
Close other access to
write end of out_pipe

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

59

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

Parent:
close read end of in_pipe

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

60

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

Parent:
close write end of out_pipe

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

61

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

DONE*
(with pipe setup)

CIT 5950, Spring 2023L20: HTTPUniversity of Pennsylvania

io_autograder.cc Trace

❖ Compilation done! Run the compiled program…
BUT send autograder input and capture output

62

Overall parent

Running main()

Terminal

Kernel

Pipe Buffer

Pipe Buffer

fork()

child

Child: exec’s student code
parent: sends in input &

reads student output

execvp("./numbers", …);

	Default Section
	Slide 1: HTTP & exec Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Logistics
	Slide 4: Lecture Outline
	Slide 5: Project: Multi-threaded Search Server
	Slide 6: Lecture Outline
	Slide 7: HTTP Basics
	Slide 8: Protocols
	Slide 9: HTTP
	Slide 10: HTTP Requests
	Slide 11: HTTP Methods
	Slide 12: HTTP Methods
	Slide 13: HTTP Methods
	Slide 14: HTTP Methods
	Slide 16: HTTP Uniform Resource Identifier (URI)
	Slide 17: HTTP Versions
	Slide 18: Client Headers
	Slide 19: A Real Request
	Slide 20: HTTP Responses
	Slide 21: Status Codes and Reason
	Slide 22: Common Statuses
	Slide 23: Server Headers
	Slide 24: A Real Response
	Slide 25: Cool HTTP/1.1 Features
	Slide 26: Cool HTTP/1.1 Features
	Slide 27: 20 years later…
	Slide 28: HTTP/2
	Slide 29: Polling Question
	Slide 30: Polling Question
	Slide 31: Polling Question
	Slide 32: Polling Question
	Slide 33: Lecture Outline
	Slide 34: Exec Visualization
	Slide 35: Exec Demo
	Slide 36: Exec Demo
	Slide 37: autograder.cc Trace
	Slide 38: autograder.cc Trace
	Slide 39: autograder.cc Trace
	Slide 40: autograder.cc Trace
	Slide 41: autograder.cc Trace
	Slide 42: autograder.cc Trace
	Slide 43: autograder.cc Trace
	Slide 44: Pipe Visualization
	Slide 45: Exec & Pipe Demo
	Slide 46: io_autograder.cc Trace
	Slide 47: io_autograder.cc Trace
	Slide 48: io_autograder.cc Trace
	Slide 49: io_autograder.cc Trace
	Slide 50: io_autograder.cc Trace
	Slide 51: io_autograder.cc Trace
	Slide 52: io_autograder.cc Trace
	Slide 53: io_autograder.cc Trace
	Slide 54: io_autograder.cc Trace
	Slide 55: io_autograder.cc Trace
	Slide 56: io_autograder.cc Trace
	Slide 57: io_autograder.cc Trace
	Slide 58: io_autograder.cc Trace
	Slide 59: io_autograder.cc Trace
	Slide 60: io_autograder.cc Trace
	Slide 61: io_autograder.cc Trace
	Slide 62: io_autograder.cc Trace

