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❖ Any questions from previous lectures?
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Logistics

❖ HW4 Posted Due Thursday 4/20 @ 11:59

❖ Project Released! Due Wednesday 4/26 @ 11:59

❖ Travis has extra Office Hours from 10:15 am to 12:15 pm 
this Thursday 4/13
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Logistics

❖ Final Exam Scheduling:  

▪ 96 hours (4 days)

▪ Opens Tuesday May 2nd @ Noon

▪ Closes Saturday May 6th @ noon
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Lecture Outline

❖ More HW4

❖ Polymorphism (start)

▪ Inheritance motivation & C++ Syntax

▪ Polymorphism & Dynamic Dispatch
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Unix Shell Control Operators: Pipe

❖ cmd1 | cmd2, creates a pipe so that the stdout of 
cmd1 is redirected to the stdin of cmd2
▪ E.g. "history | grep valgrind"
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Suggested Approach

❖ HIGHLY ENCOURAGED to follow the suggested approach

▪ Write a program that acts similarly to stdin_echo.cc

▪ Write a program that can handle commands with no pipes

• "ls"

▪ Add support for command line arguments

• "ls -l"

▪ Add support for commands with ONE pipe

• "ls -l | wc"

▪ Generalize to add support for any number of pipes

• "ls –l | wc | cat"

7
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HW4 Example Line

❖ Consider the case when a user inputs
▪ "ls"

8

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});
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HW4 Example Line

❖ Consider the case when a user inputs
▪ "ls"
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Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});

Terminal
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HW4 Hints

❖ If there are n commands in a line, there should be n-1 
pipes

❖ Each pipe should be written to by exactly one process

❖ Each pipe should be read by exactly one process

▪ Different than the one writing

❖ There are three cases to consider for commands using 
pipes

▪ The first process, which reads from stdin and writes out to a pipe

▪ The last process, which reads from a pipe and writes to stdout

▪ Processes in between which read from one pipe and write to 
another

10
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

11

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

12

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

13

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Terminal
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

18

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"
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Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("wc", …);

What happens when we run this code?
ls runs and wc reads what ls prints
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

24

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("wc", …);

What happens when we run this code?
ls runs and wc reads what ls prints
ls eventually terminates
and implicitly closes its
open file descriptors
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

25

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("wc", …);

What happens when we run this code?

wc eventually
reads EOF from the pipe
now that no one can write to it

wc knows to exit
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HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

26

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

What happens when we run this code?

pipe_shell prompts the user for the next command
After returning from waitpid on the “wc” command
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HW4 Hints

❖ There are three cases to consider for commands using 
pipes

▪ The first process, which reads from stdin and writes out to a pipe

▪ The last process, which reads from a pipe and writes to stdout

▪ Processes in between which read from one pipe and write to 
another
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HW4 Example Line 2

❖ Consider the case when a user inputs
▪ "ls | wc | cat"

29

Overall parent

Running main()
or helper_fnct()fork()

child

execvp("ls", …);
Kernel

Pipe Buffer

Terminal

Pipe Buffer

fork()

child

execvp("wc", …);

fork()
child

execvp("cat", …);
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HW4 Hints

❖ If there are n commands in a line, there should be n-1 
pipes

❖ Each pipe should be written to by exactly one process

❖ Each pipe should be read by exactly one process

▪ Different than the one writing

❖ Why is this important?

▪ Some programs run until they read in EOF

▪ EOF can only be read from a pipe if all accesses to the write-end 
of the pipe are closed and there is nothing left to read.
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HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

31

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal



CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

32

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer
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HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

33

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child
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HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

34

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);
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HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

35

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child
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HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

36

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("cat", …);

What happens when we run this code?
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HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

37

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("cat", …);

What happens when we run this code?
ls runs and cat reads what ls prints
ls terminates…
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HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

38

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("cat", …);

What happens when we run this code?
ls runs and cat reads what ls prints

cat does not read EOF
cat does not terminate…
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Lecture Outline

❖ More HW4

❖ Polymorphism (start)

▪ Inheritance motivation & C++ Syntax

▪ Polymorphism & Dynamic Dispatch

39
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Stock Portfolio Example

❖ A portfolio represents a person’s financial investments

▪ Each asset has a cost (i.e. how much was paid for it) and a market 
value (i.e. how much it is worth)

• The difference between the cost and market value is the profit (or 
loss)

▪ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments

• Cash is an asset that never incurs a profit or loss

40(Credit:  thanks to Marty Stepp for this example)
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Design Without Inheritance

❖ One class per asset type:

▪ Redundant!

▪ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

❖ See sample code in initial.tar

41

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Data

members

methods



CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Terminology:

▪ Mean the same things.  You’ll hear both.

42

Java C++

Superclass Base Class

Subclass Derived Class

Subclass inherits from 

super class.

(Superclass is “higher” 

in the hierarchy)
Derived class inherits 

from base class.

(base class is “higher” 

in the hierarchy)
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Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Benefits:

▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Others can make calls on objects without knowing which part of the 
inheritance tree it is in

▪ Extensibility

• Children can add behavior

43
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Like Java:  Access Modifiers

❖ public: visible to all other classes

❖ protected: visible to current class and its derived
classes

❖ private: visible only to the current class

❖ Use protected for class members only when

▪ Class is designed to be extended by derived classes

▪ Derived classes must have access but clients should not be 
allowed

44
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Class Derivation List

❖ Comma-separated list of classes to inherit from:

▪ Focus on single inheritance, but multiple inheritance possible

❖ Almost always you will want public inheritance
▪ Acts like extends does in Java

▪ Any member that is non-private in the base class is the same in 
the derived class; both interface and implementation inheritance

• Except that constructors, destructors, copy constructor, and 
assignment operator are never inherited

45

#include "BaseClass.h"

class Name : public BaseClass {

...

};

: public Base1, public Base2 {
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Back to Stocks

BASE DERIVED

46

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()
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Back to Stocks

❖ A derived class:

▪ Inherits the behavior and state (specification) of the base class

▪ Overrides some of the base class’ member functions (opt.)

▪ Extends the base class with new member functions, variables 
(opt.)

47

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

dividends_

GetMarketValue()

GetProfit()

GetCost()

PayDividend()

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()
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Lecture Outline

❖ More HW4

❖ Polymorphism (start)

▪ Inheritance motivation & C++ Syntax

▪ Polymorphism & Dynamic Dispatch

48
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Polymorphism in C++

❖ In Java:  PromisedType var = new ActualType();

▪ var is a reference (different term than C++ reference) to an 
object of ActualType on the Heap

▪ ActualType must be the same class or a subclass of 
PromisedType

❖ In C++:  PromisedType* var_p = new ActualType();

▪ var_p is a pointer to an object of ActualType on the Heap

▪ ActualType must be the same or a derived class of 
PromisedType

▪ (also works with references)

▪ PromisedType defines the interface (i.e. what can be called on 
var_p), but ActualType may determine which version gets 
invoked

49
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Dynamic Dispatch (like Java)

❖ Usually, when a derived function is available for an object, 
we want the derived function to be invoked

▪ This requires a run time decision of what code to invoke

❖ A member function invoked on an object should be the 
most-derived function accessible to the object’s visible 
type

▪ Can determine what to invoke from the object itself

❖ Example:  
▪ void PrintStock(Stock* s) { s->Print(); }

▪ Calls the appropriate Print() without knowing the actual type 
of *s, other than it is some sort of Stock

50

Is this a Stock or a 

DividendStock ?
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Requesting Dynamic Dispatch (C++)

❖ Prefix the member function declaration with the 
virtual keyword

▪ Derived/child functions don’t need to repeat virtual, but was 
traditionally good style to do so

▪ This is how method calls work in Java (no virtual keyword needed)

▪ You almost always want functions to be virtual

❖ override keyword (C++11)

▪ Tells compiler this method should be overriding an inherited 
virtual function – always use if available

▪ Prevents overloading vs. overriding bugs

❖ Both of these are technically optional in derived classes

▪ Be consistent and follow local conventions (Google Style Guide 
says no virtual if override)

51
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Dynamic Dispatch Example

❖ When a member function is invoked on an object:

▪ The most-derived function accessible to the object’s visible type is 
invoked (decided at run time based on actual type of the object)

52

double DividendStock::GetMarketValue() const {

return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const {  // inherited

return GetMarketValue() – GetCost(); 

}

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

Inherited

from stock

Should call DividendStock::GetMarketValue()
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Dynamic Dispatch Example

53

#include "Stock.h"

#include "DividendStock.h"

DividendStock dividend();

DividendStock* ds = &dividend;

Stock* s = &dividend;   // why is this allowed?

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.  

// Stock::GetProfit() invokes DividendStock::GetMarketValue(), 

// since that is the most-derived accessible function.

s->GetProfit();

A DividendStock “is-a” Stock, and has 

every part of Stock’s interface  
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Most-Derived

54

class A {

public:

// Foo will use dynamic dispatch

virtual void Foo();

};

class B : public A {

public:

// B::Foo overrides A::Foo

virtual void Foo();

};

class C : public B {

// C inherits B::Foo()

};

void Bar() {

A* a_ptr;

C c;

a_ptr = &c;

// Whose Foo() is called?

a_ptr->Foo();

}

Has Foo definition

A

B

C

// B::Foo
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Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
55

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2: 

a_ptr = &e;

a_ptr->Foo();

}

pollev.com/tqm
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Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
56

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2: 

a_ptr = &e;

a_ptr->Foo();

}

A

B

C

D E

B::Foo()

B::Foo()

pollev.com/tqm
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Next time:

❖ How dynamic dispatch works

❖ Static dispatch

❖ Abstract classes

❖ Polymorphism with constructor, destructors & STL

❖ C++ casting

57


	Default Section
	Slide 1: HW4 cont. & Inheritance (start) Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Logistics
	Slide 4: Logistics
	Slide 5: Lecture Outline
	Slide 6: Unix Shell Control Operators: Pipe
	Slide 7: Suggested Approach
	Slide 8: HW4 Example Line
	Slide 9: HW4 Example Line
	Slide 10: HW4 Hints
	Slide 11: HW4 Example Line 1
	Slide 12: HW4 Example Line 1
	Slide 13: HW4 Example Line 1
	Slide 14: HW4 Example Line 1
	Slide 15: HW4 Example Line 1
	Slide 16: HW4 Example Line 1
	Slide 17: HW4 Example Line 1
	Slide 18: HW4 Example Line 1
	Slide 19: HW4 Example Line 1
	Slide 20: HW4 Example Line 1
	Slide 21: HW4 Example Line 1
	Slide 22: HW4 Example Line 1
	Slide 23: HW4 Example Line 1
	Slide 24: HW4 Example Line 1
	Slide 25: HW4 Example Line 1
	Slide 26: HW4 Example Line 1
	Slide 28: HW4 Hints
	Slide 29: HW4 Example Line 2
	Slide 30: HW4 Hints
	Slide 31: HW4 Example Line (no pipe closing)
	Slide 32: HW4 Example Line (no pipe closing)
	Slide 33: HW4 Example Line (no pipe closing)
	Slide 34: HW4 Example Line (no pipe closing)
	Slide 35: HW4 Example Line (no pipe closing)
	Slide 36: HW4 Example Line (no pipe closing)
	Slide 37: HW4 Example Line (no pipe closing)
	Slide 38: HW4 Example Line (no pipe closing)
	Slide 39: Lecture Outline
	Slide 40: Stock Portfolio Example
	Slide 41: Design Without Inheritance
	Slide 42: Inheritance
	Slide 43: Inheritance
	Slide 44: Like Java:  Access Modifiers
	Slide 45: Class Derivation List
	Slide 46: Back to Stocks
	Slide 47: Back to Stocks
	Slide 48: Lecture Outline
	Slide 49: Polymorphism in C++
	Slide 50: Dynamic Dispatch (like Java)
	Slide 51: Requesting Dynamic Dispatch (C++)
	Slide 52: Dynamic Dispatch Example
	Slide 53: Dynamic Dispatch Example
	Slide 54: Most-Derived
	Slide 55: Practice Question
	Slide 56: Practice Question
	Slide 57: Next time:


