University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 cont. & Inheritance (start)
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai
Mati Davis Donglun He
Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

% Any questions from previous lectures?

L22: HW4 & Inheritance CIT 5950, Spring 2023

Logistics

+» HW4 Posted Due Thursday 4/20 @ 11:59

+ Project Released! Due Wednesday 4/26 @ 11:59

+ Travis has extra Office Hours from 10:15 am to 12:15 pm
this Thursday 4/13

University of Pennsylvania L22: HW4 & Inheritance

Logistics

% Final Exam Scheduling:
" 96 hours (4 days)
= Opens Tuesday May 2" @ Noon
= Closes Saturday May 61" @ noon

CIT 5950, Spring 2023

University of Pennsylvania

L22: HW4 & Inheritance

CIT 5950, Spring 2023

Lecture Outline

<~ More HW4

% Polymorphism (start)
" |nheritance motivation & C++ Syntax
= Polymorphism & Dynamic Dispatch

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Unix Shell Control Operators: Pipe

» cmdl | cmd2, creates a pipe so that the stdout of
cmdl is redirected to the stdin of cmd?2
" E.g."history | grep valgrind"

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Suggested Approach

» HIGHLY ENCOURAGED to follow the suggested approach

= Write a program that acts similarly to stdin_echo.cc
= Write a program that can handle commands with no pipes

. "1s"

= Add support for command line arguments
.+ "ls -1"

= Add support for commands with ONE pipe
e "ls -1 | wc"

" Generalize to add support for any number of pipes
e« "ls =1 | wc | cat"

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line

+» Consider the case when a user inputs

m " lS "
Overall parent
Running main()
or helper_fnct()
fork ()

child

execvp("ls", {"Is", nullptr});

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line

+» Consider the case when a user inputs

m " lS "
Overall parent Terminal
Running main() :
or helper_fnct()
fork ()

child

execvp("ls", {"Is", nullptr});

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Hints

o0

o0

o0

.0

If there are n commands in a line, there should be n-1
pipes

Each pipe should be written to by exactly one process
Each pipe should be read by exactly one process

= Different than the one writing

There are three cases to consider for commands using
pipes

" The first process, which reads from stdin and writes out to a pipe

" The last process, which reads from a pipe and writes to stdout

" Processes in between which read from one pipe and write to
another

10

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

Kernel

11

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main() |-« >
or helper_fnct() -

Kernel

Pipe Buffer /

12

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main() |-« >
or helper_fnct() -

fork ()

Kernel
Pipe Buffe

> 14

—

child

13

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main()
or helper_fnct()

fork ()

Kernel
Pipe Buffe

r
e j _V

—

child

14

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main()
or helper_fnct()

fork ()

Kernel

child Pipe Buffer

15

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

fork ()

Kernel

child \Pipe Buffer/

16

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

fork ()

Kernel

child Pipe Buffer
~ \ e

17

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

fork ()

Kernel

child Pipe Buffer
~ \ e

execvp("Is", ...);

18

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | we"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

fork () fork ()
Kernel
Child Pipe Buffer
— AN
execvp("Is", ...); N :>
19

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | we"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

fork () fork ()
Kernel
Child /m \‘ Pipe Buffer
chi
,/"/, N
execvp("Is", ...); N :>
20

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | we"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

fork () fork ()
Kernel
Child /m \‘ Pipe Buffer
chi
,/"/, N
execvp("Is", ...); N :>
21

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

fork () fork ()

Kernel

child / \‘ Pipe Buffer
— child

execvp("Is", ...);

22

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "ls | wc" What happens when we run this code?
Is runs and wc reads what Is prints

Overall parent Terminal

n

Running main() |-« > B

or helper_fnct()

fork () fork ()

Kernel

child Pipe Buffer
child

execvp("Is", ...);

execvp("wc", ...);

23

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "]ls | wc" What happens when we run this code?
Is runs and wc reads what Is prints
Overall parent Is eventually terminates Terminal

Runni n(and implicitly closes its
unning main < -
or helper fnct() open tile descriptors

fork () fork ()

child .
_____________ <. child

[
| " n .
| execvp("wc", ...);
[

Kernel

\‘ Pipe Buffer

24

University of Pennsylvania

L22: HW4 & Inheritance

CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "5 | wc" What happens when we run this code?

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

fork ()
wc eventually

reads EOF from the pipe

now that no one can write to it
child

Kernel

Pipe Buffer

wc knows to exit _
execvp("wc", ...);

25

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 1

+» Consider the case when a user inputs

= "]ls | wc" What happens when we run this code?
Overall parent Terminal
Running main() |-« 4 >

or helper_fnct()

pipe_shell prompts the user for the next command
After returning from waitpid on the “wc” command Kernel

Pipe Buffer

26

University of Pennsylvania L22: HW4 & Inheritance

CIT 5950, Spring 2023

HW4 Hints

+» There are three cases to consider for commands using
pipes
" The first process, which reads from stdin and writes out to a pipe
" The last process, which reads from a pipe and writes to stdout

" Processes in between which read from one pipe and write to
another

28

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line 2

+» Consider the case when a user inputs

" "]s | wc | cat"

Overall parent

Terminal

Running main()
or helper_fnct() -

child N

fork ()

execvp("ls", ...);

N\, _Pipe Buffer /

child < : ™
/ Pipe Buffer
\

execvp("wc", ...); execvpfeat—
<=
< 29

E—

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Hints

» |f there are n commands in a line, there should be n-1
pipes

» Each pipe should be written to by exactly one process

» Each pipe should be read by exactly one process

= Different than the one writing

+» Why is this important?
= Some programs run until they read in EOF

" EOF can only be read from a pipe if all accesses to the write-end
of the pipe are closed and there is nothing left to read.

30

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line (no pipe closing)

+» Consider the case when a user inputs

" "]ls | cat"

Overall parent

Terminal

Running main() |-« >
or helper_fnct()

Kernel

31

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line (no pipe closing)

+» Consider the case when a user inputs

" "]ls | cat"

Overall parent

Terminal

Running main() |-« >
or helper_fnct() -

Kernel

Pipe Buffer /

32

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line (no pipe closing)

+» Consider the case when a user inputs

" "]ls | cat"

Overall parent

Terminal

Running main() |-« >
or helper_fnct() -

fork ()

Kernel
Pipe Buffe

> 14

—

child

33

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line (no pipe closing)

+» Consider the case when a user inputs

" "]ls | cat"

Overall parent

Terminal

Running main() |-« >
or helper_fnct() -

fork ()
Kernel
child Pipe Buffer
= ng
execvp("ls", ...); —

34

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line (no pipe closing)

+» Consider the case when a user inputs

" "]ls | cat"

Overall parent

Terminal

Running main() |-« >
or helper_fnct() -

fork () fork ()

Kernel

hild Pipe Buffer
b — _///ﬁﬁg/ /

execvp("Is", ...);

7\

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line (no pipe closing)

+» Consider the case when a user inputs

m "l ")
s | cat What happens when we run this code?

Overall parent Terminal

Running main() |-« > B

or helper_fnct() -

fork () fork ()

Kernel

hild Pipe Buffer
b — W 7/

execvp("Is", ...);

7\

execvp("cat", ...);

t\§_;\\\‘_; 4__,//f _%

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line (no pipe closing)

+» Consider the case when a user inputs

m "l ")
s | cat What happens when we run this code?

Is runs and cat reads what Is prints

Overall parent))
i Is terminates... Terminal

Running main() |-« > B

or helper_fnct() -

fork () fork ()
Kernel
child . Pipe Buffer
ey w /
I 1" 1" .
! execvp("Is", ...); : execvp("cat", ...); A4
I
I
L o e e e e e - - -
L \\ / _ 37

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

HW4 Example Line (no pipe closing)

+» Consider the case when a user inputs

m "l ")
s | cat What happens when we run this code?

Is runs and cat reads what Is prints

Overall parent Terminal

n

Running main() |-« > B

or helper_fnct() -

fork ()
cat does not read EOF Kernel
cat does not terminate... Pipe Buffer

child N

/N

7\

execvp("cat", ...); ~\\\\\\ :>
_/

38

University of Pennsylvania L22: HW4 & Inheritance

Lecture Outline

< More HW4
< Polymorphism (start)

" |nheritance motivation & C++ Syntax
= Polymorphism & Dynamic Dispatch

CIT 5950, Spring 2023

39

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Stock Portfolio Example

+ A portfolio represents a person’s financial investments
" Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

- The difference between the cost and market value is the profit (or
loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments
« Cash is an asset that never incurs a profit or loss

(Credit: thanks to Marty Stepp for this example) 20

University of Pennsylvania

L22: HW4 & Inheritance

Desigh Without Inheritance

+» One class per asset type:

symbol
total shares
total cost
current price

GetMarketValue ()
GetProfit ()
GetCost ()

= Redundant!

DividendStock

symbol
total shares
total cost

current price | DPatfa
dividends members
GetMarketValue () y
GetProfit () methods
GetCost ()

= Cannot treat multiple investments together
- e.g. can’t have an array or vector of different assets

+» Seesamplecodein initial.tar

CIT 5950, Spring 2023

41

University of Pennsylvania L22: HW4 & Inheritance

CIT 5950, Spring 2023

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

Subclass herits from
super class. Superclass Base Class

(Superclass is “higher’ Subclass Derived Class

v the hierarc

" the hierarchy) Derived class mherits
from base class.

(base class is “higher”
i the hierarchy)

" Mean the same things. You’ll hear both.

42

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Inheritance

+ A parent-child “is-a” relationship between classes

= A child (derived class) extends a parent (base class)

+ Benefits:
= Code reuse
« Children can automatically inherit code from parents
= Polymorphism
- Ability to redefine existing behavior but preserve the interface

« Children can override the behavior of the parent

- Others can make calls on objects without knowing which part of the
inheritance tree it is in

= Extensibility
« Children can add behavior

43

University of Pennsylvania L22: HW4 & Inheritance

CIT 5950, Spring 2023

Like Java: Access Modifiers

*

public: visible to all other classes

+ protected: visibleto current class and its derived
classes

» private: visible only to the current class

+ Use protected for class members only when

= (Class is designed to be extended by derived classes

= Derived classes must have access but clients should not be
allowed

44

L22: HW4 & Inheritance CIT 5950, Spring 2023

University of Pennsylvania

Class Derivation List

+» Comma-separated list of classes to inherit from:

\

r#include "BaseClass.h"

class Name : public BaseClass {

|})
" Focus on single inheritance, but multiple inheritance possible
 public Baset, public Base2 ¢

+ Almost always you will want public inheritance

= Acts like extends does in Java

= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

ﬁExcept that constructors, destructors, copy constructor, and
assignment operator are never inherited

45

University of Pennsylvania

Back to Stocks

symbol
total_shares_
total_cost_

current_price_

GetMarketValue ()
GetProfit ()
GetCost ()

BASE

L22: HW4 & Inheritance

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

DERIVED

CIT 5950, Spring 2023

46

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Back to Stocks

Stock ..
symbol dividends
- symbol —
total_ shares__ total shares
total cost total cost_
3 current price .
current price_ — Zv : _<> . GetProfit ()
e arke atue L
GetMarketVIalue () GetProfit () 4: - - GetCost ()
GetProfit () GetCost () 4= PayDividend ()
GetCost ()

+» A derived class:
" |nherits the behavior and state (specification) of the base class
m some of the base class” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

47

University of Pennsylvania L22: HW4 & Inheritance

Lecture Outline

«» More HW4
+» Polymorphism (start)

" |nheritance motivation & C++ Syntax
= Polymorphism & Dynamic Dispatch

CIT 5950, Spring 2023

48

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Polymorphism in C++

X/

+ InJava: PromisedType var = new ActualType () ;

= var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

" ActualType must be the same class or a subclass of
PromisedType

% In C++: PromisedType* var p = new ActualType () ;
" var pisapointerto an object of ActualType on the Heap

" ActualType must be the same or a derived class of
PromlisedType

= (also works with references)

PromisedType defines the interface (i.e. what can be called on
var p), but ActualType may determine which version gets

invoked
49

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Dynamic Dispatch (like Java)

+ Usually, when a derived function is available for an object,
we want the derived function to be invoked

= This requires a run time decision of what code to invoke

+ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type
= Can determine what to invoke from the object itself

Ts this a Stock or a

« Example: / DividendStock 7

" void PrintStock (Stock* s) { s->Print(),; }

= Calls the appropriate Print () without knowing the actual type
of *s, other than it is some sort of Stock

50

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Requesting Dynamic Dispatch (C++)

« Prefix the member function declaration with the
virtual keyword

= Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

" This is how method calls work in Java (no virtual keyword needed)
" You almost always want functions to be virtual

+» override keyword (C++11)

= Tells compiler this method should be overriding an inherited
virtual function — always use if available

" Prevents overloading vs. overriding bugs

+ Both of these are technically optional in derived classes

= Be consistent and follow local conventions (Google Style Guide

says no virtual if override)
51

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Dynamic Dispatch Example

+» When a member function is invoked on an object:

" The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

rdouble DividendStock: :GetMarketValue () const {

return get shares() * get share price() + dividends ;
}
Tubherited _ , ,
from stock] double "DividendStock"::GetProfit () const { // inherited
» return GetMarketValue () - GetCost();

} Should call DividendStock: :GetMarketValue () DividendStock.cc

\

\

[double Stock: :GetMarketValue () const {
return get shares() * get share price();

}

double Stock::GetProfit() const {
return GetMarketValue () - GetCost();

} Stock.cc

52

\

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Dynamic Dispatch Example

(#include "Stock.h" b
#include "DividendStock.h"
DividendStock dividend(); A DividendStock “is-a” Stock, and has
DividendStock* ds = ÷nd; every part of Stock’s interface
Stock* s = ÷nd; // why is this allowed?
// Invokes DividendStock::GetMarketValue ()
ds->GetMarketValue () ;
// Invokes DividendStock::GetMarketValue ()
s—->GetMarketValue () ;
// 1invokes Stock::GetProfit (), since that method 1is inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue(),
// since that 1is the most-derived accessible function.
s—->GetProfit () ;

_ J

53

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

Most-Derived

(class A { b
public:
// Foo will use dynamic dispatch
virtual void Foo(); (void Bar() {]
}s A* a ptr;
C c;
class B : public A {
public: a ptr = &c;
// B::Foo overrides A::Foo
virtual void Foo () ; // Whose Foo() 1s called?
}; a ptr->Foo () ; [/ BuFoo
}
class C : public B { : ’
// C inherits B::Foo /()
CK) »

Has Foo definition e
G 54

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

+ Whose Foo () is called? class A {
public:

virtual void Foo () ;

¥

void Bar() class B : public A {

A* a_ptr; public:
C c; virtual void Foo () ;
E e;)

Ql Q2 // 01:

class C : public B {

A. a ptr = &c; I

a ptr->Foo ()
B. A D - class D : public C {

/) 02 public:
C. B B A ptr = &e; virtual void Foo () ;
D. B D a:ptr—>Foo(); bi

\}) | class E : public C {

E. We're lost... };

55

University of Pennsylvania L22: HW4 & Inheritance CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

+ Whose Foo () is called? class A {
public:

virtual void Foo () ;

@ ¥

‘E’ void Bar() class B : public A {

e A% a_ptr; public:
C c;

e virtual void Foo () ;
e) £ o

I
Ql Q // O1: class C : public B {
a ptr = &c; I
a ptr->Foo () ;

class D : public C {

A
B. A D BuFoo() |
C \\\// 02: public:

. B B a ptr = se; virtual void Foo () ;
tr->Foo () ; bi
D. B D a_ptr—>F
\} gl) | class E : public C {

E. We're lost... };

\ J

56

University of Pennsylvania L22: HW4 & Inheritance

Next time:

+» How dynamic dispatch works

+ Static dispatch

+ Abstract classes

% Polymorphism with constructor, destructors & STL
% C++ casting

CIT 5950, Spring 2023

57

	Default Section
	Slide 1: HW4 cont. & Inheritance (start) Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Logistics
	Slide 4: Logistics
	Slide 5: Lecture Outline
	Slide 6: Unix Shell Control Operators: Pipe
	Slide 7: Suggested Approach
	Slide 8: HW4 Example Line
	Slide 9: HW4 Example Line
	Slide 10: HW4 Hints
	Slide 11: HW4 Example Line 1
	Slide 12: HW4 Example Line 1
	Slide 13: HW4 Example Line 1
	Slide 14: HW4 Example Line 1
	Slide 15: HW4 Example Line 1
	Slide 16: HW4 Example Line 1
	Slide 17: HW4 Example Line 1
	Slide 18: HW4 Example Line 1
	Slide 19: HW4 Example Line 1
	Slide 20: HW4 Example Line 1
	Slide 21: HW4 Example Line 1
	Slide 22: HW4 Example Line 1
	Slide 23: HW4 Example Line 1
	Slide 24: HW4 Example Line 1
	Slide 25: HW4 Example Line 1
	Slide 26: HW4 Example Line 1
	Slide 28: HW4 Hints
	Slide 29: HW4 Example Line 2
	Slide 30: HW4 Hints
	Slide 31: HW4 Example Line (no pipe closing)
	Slide 32: HW4 Example Line (no pipe closing)
	Slide 33: HW4 Example Line (no pipe closing)
	Slide 34: HW4 Example Line (no pipe closing)
	Slide 35: HW4 Example Line (no pipe closing)
	Slide 36: HW4 Example Line (no pipe closing)
	Slide 37: HW4 Example Line (no pipe closing)
	Slide 38: HW4 Example Line (no pipe closing)
	Slide 39: Lecture Outline
	Slide 40: Stock Portfolio Example
	Slide 41: Design Without Inheritance
	Slide 42: Inheritance
	Slide 43: Inheritance
	Slide 44: Like Java: Access Modifiers
	Slide 45: Class Derivation List
	Slide 46: Back to Stocks
	Slide 47: Back to Stocks
	Slide 48: Lecture Outline
	Slide 49: Polymorphism in C++
	Slide 50: Dynamic Dispatch (like Java)
	Slide 51: Requesting Dynamic Dispatch (C++)
	Slide 52: Dynamic Dispatch Example
	Slide 53: Dynamic Dispatch Example
	Slide 54: Most-Derived
	Slide 55: Practice Question
	Slide 56: Practice Question
	Slide 57: Next time:

