
CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 cont. & Inheritance (start)
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

❖ Any questions from previous lectures?

2

pollev.com/tqm

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Logistics

❖ HW4 Posted Due Thursday 4/20 @ 11:59

❖ Project Released! Due Wednesday 4/26 @ 11:59

❖ Travis has extra Office Hours from 10:15 am to 12:15 pm
this Thursday 4/13

3

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Logistics

❖ Final Exam Scheduling:

▪ 96 hours (4 days)

▪ Opens Tuesday May 2nd @ Noon

▪ Closes Saturday May 6th @ noon

4

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Lecture Outline

❖ More HW4

❖ Polymorphism (start)

▪ Inheritance motivation & C++ Syntax

▪ Polymorphism & Dynamic Dispatch

5

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Unix Shell Control Operators: Pipe

❖ cmd1 | cmd2, creates a pipe so that the stdout of
cmd1 is redirected to the stdin of cmd2
▪ E.g. "history | grep valgrind"

6

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Suggested Approach

❖ HIGHLY ENCOURAGED to follow the suggested approach

▪ Write a program that acts similarly to stdin_echo.cc

▪ Write a program that can handle commands with no pipes

• "ls"

▪ Add support for command line arguments

• "ls -l"

▪ Add support for commands with ONE pipe

• "ls -l | wc"

▪ Generalize to add support for any number of pipes

• "ls –l | wc | cat"

7

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line

❖ Consider the case when a user inputs
▪ "ls"

8

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line

❖ Consider the case when a user inputs
▪ "ls"

9

Overall parent

Running main()
or helper_fnct()

fork()

child

execvp("ls", {"ls", nullptr});

Terminal

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Hints

❖ If there are n commands in a line, there should be n-1
pipes

❖ Each pipe should be written to by exactly one process

❖ Each pipe should be read by exactly one process

▪ Different than the one writing

❖ There are three cases to consider for commands using
pipes

▪ The first process, which reads from stdin and writes out to a pipe

▪ The last process, which reads from a pipe and writes to stdout

▪ Processes in between which read from one pipe and write to
another

10

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

11

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

12

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

13

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

14

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

15

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

16

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

17

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

18

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

19

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

20

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

21

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

22

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

23

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("wc", …);

What happens when we run this code?
ls runs and wc reads what ls prints

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

24

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("wc", …);

What happens when we run this code?
ls runs and wc reads what ls prints
ls eventually terminates
and implicitly closes its
open file descriptors

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

25

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("wc", …);

What happens when we run this code?

wc eventually
reads EOF from the pipe
now that no one can write to it

wc knows to exit

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 1

❖ Consider the case when a user inputs
▪ "ls | wc"

26

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

What happens when we run this code?

pipe_shell prompts the user for the next command
After returning from waitpid on the “wc” command

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Hints

❖ There are three cases to consider for commands using
pipes

▪ The first process, which reads from stdin and writes out to a pipe

▪ The last process, which reads from a pipe and writes to stdout

▪ Processes in between which read from one pipe and write to
another

28

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line 2

❖ Consider the case when a user inputs
▪ "ls | wc | cat"

29

Overall parent

Running main()
or helper_fnct()fork()

child

execvp("ls", …);
Kernel

Pipe Buffer

Terminal

Pipe Buffer

fork()

child

execvp("wc", …);

fork()
child

execvp("cat", …);

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Hints

❖ If there are n commands in a line, there should be n-1
pipes

❖ Each pipe should be written to by exactly one process

❖ Each pipe should be read by exactly one process

▪ Different than the one writing

❖ Why is this important?

▪ Some programs run until they read in EOF

▪ EOF can only be read from a pipe if all accesses to the write-end
of the pipe are closed and there is nothing left to read.

30

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

31

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

32

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

33

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

34

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

35

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

36

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("cat", …);

What happens when we run this code?

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

37

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("ls", …);

fork()

child

execvp("cat", …);

What happens when we run this code?
ls runs and cat reads what ls prints
ls terminates…

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

HW4 Example Line (no pipe closing)

❖ Consider the case when a user inputs
▪ "ls | cat"

38

Overall parent

Running main()
or helper_fnct()

Kernel

Terminal

Pipe Buffer

fork()

child

execvp("cat", …);

What happens when we run this code?
ls runs and cat reads what ls prints

cat does not read EOF
cat does not terminate…

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Lecture Outline

❖ More HW4

❖ Polymorphism (start)

▪ Inheritance motivation & C++ Syntax

▪ Polymorphism & Dynamic Dispatch

39

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Stock Portfolio Example

❖ A portfolio represents a person’s financial investments

▪ Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

• The difference between the cost and market value is the profit (or
loss)

▪ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments

• Cash is an asset that never incurs a profit or loss

40(Credit: thanks to Marty Stepp for this example)

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Design Without Inheritance

❖ One class per asset type:

▪ Redundant!

▪ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

❖ See sample code in initial.tar

41

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

Data

members

methods

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Terminology:

▪ Mean the same things. You’ll hear both.

42

Java C++

Superclass Base Class

Subclass Derived Class

Subclass inherits from

super class.

(Superclass is “higher”

in the hierarchy)
Derived class inherits

from base class.

(base class is “higher”

in the hierarchy)

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

❖ Benefits:

▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Others can make calls on objects without knowing which part of the
inheritance tree it is in

▪ Extensibility

• Children can add behavior

43

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Like Java: Access Modifiers

❖ public: visible to all other classes

❖ protected: visible to current class and its derived
classes

❖ private: visible only to the current class

❖ Use protected for class members only when

▪ Class is designed to be extended by derived classes

▪ Derived classes must have access but clients should not be
allowed

44

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Class Derivation List

❖ Comma-separated list of classes to inherit from:

▪ Focus on single inheritance, but multiple inheritance possible

❖ Almost always you will want public inheritance
▪ Acts like extends does in Java

▪ Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

• Except that constructors, destructors, copy constructor, and
assignment operator are never inherited

45

#include "BaseClass.h"

class Name : public BaseClass {

...

};

: public Base1, public Base2 {

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Back to Stocks

BASE DERIVED

46

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

symbol_

total_shares_

total_cost_

current_price_

dividends_

GetMarketValue()

GetProfit()

GetCost()

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Back to Stocks

❖ A derived class:

▪ Inherits the behavior and state (specification) of the base class

▪ Overrides some of the base class’ member functions (opt.)

▪ Extends the base class with new member functions, variables
(opt.)

47

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

DividendStock

dividends_

GetMarketValue()

GetProfit()

GetCost()

PayDividend()

Stock

symbol_

total_shares_

total_cost_

current_price_

GetMarketValue()

GetProfit()

GetCost()

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Lecture Outline

❖ More HW4

❖ Polymorphism (start)

▪ Inheritance motivation & C++ Syntax

▪ Polymorphism & Dynamic Dispatch

48

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Polymorphism in C++

❖ In Java: PromisedType var = new ActualType();

▪ var is a reference (different term than C++ reference) to an
object of ActualType on the Heap

▪ ActualType must be the same class or a subclass of
PromisedType

❖ In C++: PromisedType* var_p = new ActualType();

▪ var_p is a pointer to an object of ActualType on the Heap

▪ ActualType must be the same or a derived class of
PromisedType

▪ (also works with references)

▪ PromisedType defines the interface (i.e. what can be called on
var_p), but ActualType may determine which version gets
invoked

49

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Dynamic Dispatch (like Java)

❖ Usually, when a derived function is available for an object,
we want the derived function to be invoked

▪ This requires a run time decision of what code to invoke

❖ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

▪ Can determine what to invoke from the object itself

❖ Example:
▪ void PrintStock(Stock* s) { s->Print(); }

▪ Calls the appropriate Print() without knowing the actual type
of *s, other than it is some sort of Stock

50

Is this a Stock or a

DividendStock ?

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Requesting Dynamic Dispatch (C++)

❖ Prefix the member function declaration with the
virtual keyword

▪ Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

▪ This is how method calls work in Java (no virtual keyword needed)

▪ You almost always want functions to be virtual

❖ override keyword (C++11)

▪ Tells compiler this method should be overriding an inherited
virtual function – always use if available

▪ Prevents overloading vs. overriding bugs

❖ Both of these are technically optional in derived classes

▪ Be consistent and follow local conventions (Google Style Guide
says no virtual if override)

51

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Dynamic Dispatch Example

❖ When a member function is invoked on an object:

▪ The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

52

double DividendStock::GetMarketValue() const {

return get_shares() * get_share_price() + dividends_;

}

double "DividendStock"::GetProfit() const { // inherited

return GetMarketValue() – GetCost();

}

double Stock::GetMarketValue() const {

return get_shares() * get_share_price();

}

double Stock::GetProfit() const {

return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

Inherited

from stock

Should call DividendStock::GetMarketValue()

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Dynamic Dispatch Example

53

#include "Stock.h"

#include "DividendStock.h"

DividendStock dividend();

DividendStock* ds = ÷nd;

Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()

ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()

s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.

// Stock::GetProfit() invokes DividendStock::GetMarketValue(),

// since that is the most-derived accessible function.

s->GetProfit();

A DividendStock “is-a” Stock, and has

every part of Stock’s interface

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Most-Derived

54

class A {

public:

// Foo will use dynamic dispatch

virtual void Foo();

};

class B : public A {

public:

// B::Foo overrides A::Foo

virtual void Foo();

};

class C : public B {

// C inherits B::Foo()

};

void Bar() {

A* a_ptr;

C c;

a_ptr = &c;

// Whose Foo() is called?

a_ptr->Foo();

}

Has Foo definition

A

B

C

// B::Foo

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
55

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2:

a_ptr = &e;

a_ptr->Foo();

}

pollev.com/tqm

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
56

class A {

public:

virtual void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

virtual void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

C c;

E e;

// Q1:

a_ptr = &c;

a_ptr->Foo();

// Q2:

a_ptr = &e;

a_ptr->Foo();

}

A

B

C

D E

B::Foo()

B::Foo()

pollev.com/tqm

CIT 5950, Spring 2023L22: HW4 & InheritanceUniversity of Pennsylvania

Next time:

❖ How dynamic dispatch works

❖ Static dispatch

❖ Abstract classes

❖ Polymorphism with constructor, destructors & STL

❖ C++ casting

57

	Default Section
	Slide 1: HW4 cont. & Inheritance (start) Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Logistics
	Slide 4: Logistics
	Slide 5: Lecture Outline
	Slide 6: Unix Shell Control Operators: Pipe
	Slide 7: Suggested Approach
	Slide 8: HW4 Example Line
	Slide 9: HW4 Example Line
	Slide 10: HW4 Hints
	Slide 11: HW4 Example Line 1
	Slide 12: HW4 Example Line 1
	Slide 13: HW4 Example Line 1
	Slide 14: HW4 Example Line 1
	Slide 15: HW4 Example Line 1
	Slide 16: HW4 Example Line 1
	Slide 17: HW4 Example Line 1
	Slide 18: HW4 Example Line 1
	Slide 19: HW4 Example Line 1
	Slide 20: HW4 Example Line 1
	Slide 21: HW4 Example Line 1
	Slide 22: HW4 Example Line 1
	Slide 23: HW4 Example Line 1
	Slide 24: HW4 Example Line 1
	Slide 25: HW4 Example Line 1
	Slide 26: HW4 Example Line 1
	Slide 28: HW4 Hints
	Slide 29: HW4 Example Line 2
	Slide 30: HW4 Hints
	Slide 31: HW4 Example Line (no pipe closing)
	Slide 32: HW4 Example Line (no pipe closing)
	Slide 33: HW4 Example Line (no pipe closing)
	Slide 34: HW4 Example Line (no pipe closing)
	Slide 35: HW4 Example Line (no pipe closing)
	Slide 36: HW4 Example Line (no pipe closing)
	Slide 37: HW4 Example Line (no pipe closing)
	Slide 38: HW4 Example Line (no pipe closing)
	Slide 39: Lecture Outline
	Slide 40: Stock Portfolio Example
	Slide 41: Design Without Inheritance
	Slide 42: Inheritance
	Slide 43: Inheritance
	Slide 44: Like Java: Access Modifiers
	Slide 45: Class Derivation List
	Slide 46: Back to Stocks
	Slide 47: Back to Stocks
	Slide 48: Lecture Outline
	Slide 49: Polymorphism in C++
	Slide 50: Dynamic Dispatch (like Java)
	Slide 51: Requesting Dynamic Dispatch (C++)
	Slide 52: Dynamic Dispatch Example
	Slide 53: Dynamic Dispatch Example
	Slide 54: Most-Derived
	Slide 55: Practice Question
	Slide 56: Practice Question
	Slide 57: Next time:

