University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Inheritance & Casting
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai
Mati Davis Donglun He
Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

% Any questions from previous lectures?

L23: Inheritance & Casting CIT 5950, Spring 2023

Logistics

+» HW4 Posted Due Thursday 4/20 @ 11:59

+» Project Released! Due Wednesday 4/26 @ 11:59

+ Travis has extra Office Hours from 10:15 am to 12:15 pm
this Thursday 4/13

University of Pennsylvania L23: Inheritance & Casting

Logistics

% Final Exam Scheduling:
" 96 hours (4 days)
= Opens Tuesday May 2" @ Noon
= Closes Saturday May 61" @ noon

CIT 5950, Spring 2023

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Lecture Outline

«+ C++ Inheritance
= Static Dispatch
® Constructors and Destructors

" Assignment

+» C++ Casting

+ Reference: C++ Primer, Chapter 15

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Dynamic Dispatch (like Java)

+ Usually, when a derived function is available for an object,
we want the derived function to be invoked

= This requires a run time decision of what code to invoke

+ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type
= Can determine what to invoke from the object itself

Ts this a Stock or a

« Example: / DividendStock 7

" void PrintStock (Stock* s) { s->Print(),; }

= Calls the appropriate Print () without knowing the actual type
of *s, other than it is some sort of Stock

L23: Inheritance & Casting CIT 5950, Spring 2023

University of Pennsylvania

Requesting Dynamic Dispatch (C++)

+ Prefix the member function declaration with the

virtual keyword

= Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

" This is how method calls work in Java (no virtual keyword needed)

" You almost always want functions to be virtual

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Reminder: virtual is “sticky”

« IfX::£ () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) £

« £ () will be called using dynamic dispatch even if
overridden in a derived class without the virtual

keyword
" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Most-Derived

(class A { b
public:
// Foo will use dynamic dispatch
virtual void Foo () ; (void Bar() {]
}s A* a ptr;
C c;
class B : public A {
public: a ptr = &c;
// B::Foo overrides A::Foo
void Foo () ; // Whose Foo () 1is called?
}; a_ptr—>Foo();//Eﬂ?oo
}
class C : public B { : ’
// C inherits B::Foo()
CK) »

Has Foo definition e
(& 9

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

+ Whose Foo () is called? class A {
public:

virtual void Foo () ;

¥

void Bar() class B : public A {

A% a_ptr; public:
A aj void Foo () ;
D d;

I
Ql Q2 // 01:

class C : public B {

A. a ptr = &a; I
a ptr->Foo ()
B. A D - class D : public C {
/) 02 public:
C. B B a ptr = &d; void Foo();
D. B D a ptr->Foo () ; bi
\}) | class E : public C {
E. We're lost... };

10

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

+ Whose Foo () is called? class A {
public:

virtual void Foo () ;

@ ¥

@ void Bar() class B : public A {

e A* a_ptr; public:
A aj void Foo () ;

e e D d; };
Q Q2 // Ql:

class C : public B {
\ a ptr = &a; I

A.
a ptr->Foo () ; |
B. A D \ B AxFoo() class D : public C {
// 02: public:
C. B B \a ptr = &d; volid Foo () ;
N . I
D. B D a_ptr—>bﬁ"oo(),
U PiFool) | class E : public C {

E. We're lost...]

11

L23: Inheritance & Casting CIT 5950, Spring 2023

University of Pennsylvania

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writesina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

" This is different than Java

[class Derived : public Base { ... };
» Derived: :foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;

Base* bp = &d;
dp->foo () ; » Base::foo()
bp->foo () ;

return EXIT SUCCESS;

12

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

«» Whose Foo () is called? test.cc

class A {
public:
void Foo () ;

bg

class B : public A {
public:
[void Bar () { virtual void Foo () ;

Ql QZ D d; }i

A. A* a ptr = &d; c%ass C : public B {
C* c ptr = &d; bi
B. A D y class D : public C {
Q1: N
public:
Co D B a_ptr—>Foo () void Foo () ;
§ e
D. D D // Q2:
c_ptr->Foo () ; class E : public C {
E. We're lost...) };

13

University of Pennsylvania

L23: Inheritance & Casting

@ Poll Everywhere

«» Whose Foo () is called?

Q1 Q2

A.

B. A D

C. D B

D. D D

E. We're lost...

Key:
Static dispateh
Dynamic dispateh

CIT 5950, Spring 2023

pollev.com/tqm

[void Bar () {
D d;

A* a ptr = &d;
C* ¢ ptr = &d;

// 01: Aufoo
a ptr->Foo () ;

// 02: Dufoo
c ptr->Foo () ;

}

\

test.cc
class A {
public:
void Foo () ;
}i
class B : public A {
public:

virtual void Foo () ;

b g

class C : public B {
I

class D : public C {
public:

void Foo () ;

b g

class E

b g

: public C {

14

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Why Not Always Use virtual?

+» Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)

- A class with no virtual functions has objects without a vptr field

= Control:

- If £() callsg () inclass X and g is not virtual, we’re guaranteed to
call X::g () and not g () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

*

L)

D)

- In C++ and C#, you can pick what you want

" Omitting virtual can cause obscure bugs

= (Most of the time, you want member function to be virtual)
16

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Dispatch Decision Tree

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. ob7 .Fecn ()), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1is called?

'

Is Fen () Yes 3 PSRl =ONTE B [FE, W Yes Dynamic dispatch of
. : marked virtual in : \
defined in P cedT or in classes it - most-derived version of
PromisedT? rom'lsel Fcn () visible to ActualT
derives from? ———

l No l No Try to understand why
the flow chart works, and
not only meworize it
Demo later n lecture

Compiler Static dispatch of
Error PromisedT::Fcn()

17

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Mixed Dispatch Example

Key:
Static dispatch
mixed.cc Dynamic dispatch
(class A { \(void main (int argc, b
public: char** argv) {
// ml will use static dispatch A ay :
romised Type
void ml () { cout << "al, "; } B b; prom : ﬁ?
// m2 will use dynamic dispatch .) !QE ?ﬁ.WPG
virtual void m2() { cout << "a2"; } a_ptr_a = &a;

A* a ptr b = &b;

B*¥ b ptr—a—=—&a; Compiler error
B* b ptr b = &b;

[

class B : public A { e
public: @
void ml() { cout << "bl, "; }

// m2 is still virtual by default
Virtpal void m2 () { cout << "b2"; }

a ptr a->ml(); // Aum
a ptr a->m2(); // Awm2

a ptr b->ml(); // A

b7
~ :] ; / tr b->m2 () 5 // N
(remember, virtual is “sticky”) a_ptr_ Bum2

b ptr b->ml1(); // Buml
b_ptr_b—>m2 () // 'B::VV\Z
}

\. J

18

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

+ Apply what you’ve learned to a more

complex example! , poll.cc
. . class A {
+» What s printed? public:
virtual void Foo () {

cout << "H'";
this->Bar () ;

}

l\- void Bar () {
B HA cout << "A";
. }
. ; : I
C. Compiler Error |int main() {
) B b; class B : public A {
D. Segmentation B* b_ptr = &b; public:
faL"t virtual void Bar () {
// Q.' cout << "I";
b ptr->Foo () ;
E. We're lost... . -

19

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

@ Poll Everywhere pollev.com/tqm

+ Apply what you’ve learned to a more

complex example! , poll.cc
. . class A {
+» What s printed? public:
"this" virtual void Foo () {
Is of type A" cout << "H";
m this context this->Bar();
So, static dispatch }
A. If we removed “this—>" void Bar() {
we would aet same behaviour COLE
B. HA 9 |
g . , i
C. Compiler Error |int main() {
. B b; class B : public A {
D. Segmentation B* b_ptr = &b; public:
f It virtual void Bar () {
au [/ Q: cout << "I1I";

b ptr->Foo () ; }

E. We're lost... } .

20

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between sub-objects)

= Base sub-object usually first in memory on Linux

+» Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

22

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Demo: From structs to objects

+ See static dispatch/

"= How do you properly handle memory management?
- Ignores dynamic dispatch for now

+ See dynamic dispatch/

= Rewriting static_dispatch code to hold vtables and dynamic
dispatch?

23

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Constructors and Destructors
= Assighment

+» C++ Casting

+ Reference: C++ Primer, Chapter 15

24

University of Pennsylvania

L23: Inheritance & Casting

CIT 5950, Spring 2023

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

® The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

« You can use the initialization list of the derived class to specify which
base class constructor to use

25

University of Pennsylvania

Constructor Examples

L23: Inheritance & Casting

CIT 5950, Spring 2023

goodctor.cc

badctor.cc
[class Base { // no default ctor
public:
Base (int yi) y(yi) { }
int y;

b g

// Compiler error when you try to
// 1instantiate a Derl, as the

// synthesized default ctor needs
// to invoke Base's default ctor.

Cowmpiler
error ®
No defanl+
ctor

class Der?2

public Base {
public:
Der2 (int yi, int zi)
Base (yi), z(zi) { }
int z; ™ Tuvokes a specific ctor
I

.

class Base {
public:

int y;
¥

// works now
class Derl

class Der?
public:

int z;

b g

\.

[// has default ctor

public:
int z; Because base has
}; defanlt ctor
// still works l

Der?2 (int z1i)

\

public Base {

public Base {

z(z1i) { }

26

CIT 5950, Spring 2023

University of Pennsylvania

L23: Inheritance & Casting

Destructors and Inheritance

« Destructor of a derived
class:
" First runs body of the dtor

® Then invokes of the dtor
of the base class

+ Static dispatch of
destructors is almost
always a mistake!

" Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

baddtor.cc
(class Base {)
public:
Base() { x = new int; }

~Base () { delete x; }NU%VW*MN,

int* x; Static dispateh

b g

class Derl : public Base {

public:
Derl() { y = new 1nt; }
~Derl () { delete y; }

e AT K
[lﬂOP+V —| X /
b’\P‘W —_— ‘
void foo () {

Base* bOptr =
Base* blptr =

new Base;
new Derl;

delete bOptr; // delete’sx
delete blptr; //delete’s x, but not y

L } Both invoke Base dtorllll)

27

University of Pennsylvania

L23: Inheritance & Casting

Assignment and Inheritance

% C++ allows you to assign
the value of a derived
class to an instance of
a base class
" Known as object slicing

- It’slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

CIT 5950, Spring 2023

slicing.cc

(class Base

public:
Base (1nt
int x;

b g

class Derl

public:
Derl (1int
int y;

} i

volid foo ()
Base b (1
Derl d(2

d =
b =

b;
d;

{

xi) : x(xi) { 1}
<[]

: public Base {

yi) : Base(16), y(yi) { }

X @]l v

2

)

{
) ;
// Compiler error — not enoungh vfo
// ok, What happens +to 7

V' is not copied over.

N

28

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

STL and Inheritance

+ Recall: STL containers store copies of values

" What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

" You get sliced ®

[#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 1i;

1i.push back (s); // OK
li.push back(ds); // OUCH!

return EXIT SUCCESS;

29

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

STL and Inheritance

+» Instead, store pointers to heap-allocated objects in STL
containers

= Noslicing! © Vector<Stock*s
" sort () doesthe wrong thing ® Sorts by address value on defanlt

" You have to remember to de 1l et e your objects before
destroying the container ®
« Unless you use Smart pointers!

30

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Lecture Outline

« C++ Inheritance
= Static Dispatch
® Constructors and Destructors

" Assignment

+» C++ Casting

+» Reference: C++ Primer §4.11.3, 19.2.1

31

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Explicit Casting in C

+ Simple syntax: [lhs
+ Used to:

" Convert between pointers of arbitrary type (\id*) my ptr

(new type) rhs;

- Doesn’t change the data, but treats it differently

" Forcibly convert a primitive type to another (double) my_int
- Actually changes the representation

% You can still use C-style casting in C++, but sometimes the
intent is not clear

32

University of Pennsylvania L23: Inheritance & Casting CIT 5950, Spring 2023

Casting in C++

+» C++ provides an alternative casting style that is more
informative:

" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code

" |ntent is clearer

= Easier to find in code via searching

33

CIT 5950, Spring 2023

University of Pennsylvania

static_cast

Any well-defined cowversion

+ static cast canconvert:

+ static castis
checked at compile time

Pointers to classes of related type

- Compiler error if classes are not related
- Dangerous to cast down a class hierarchy

casting void* to T*
Non-pointer conversion
- e.g. floattoint

L23: Inheritance & Casting

staticcast.cc

rclass A {
public: (:)

N\

int x;

b

class B {

public:
float y; e
} i
class C : public B {
public:
char z;

b g

\

void

//
A *
//
B*
//
C*

foo () {

B b; C c;

compiler error Wirelated types
aptr = static cast<A*>(&b);
oK Would have worked without cast
bptr = static cast<B*>(&c);
compiles, but dangerous

cptr = static cast<C*>(&b);

1 What happeus whev you do cptr->z7

34

University of Pennsylvania

L23: Inheritance & Casting

CIT 5950, Spring 2023

dynamiccast.cc

- 1 B
dynamic cast RS
« dynamic cast can convert: virtual void foo() { }
o float x;
= Pointers to classes of related type)

= References to classes of related type

class Derl public Base {

» dynamic cast is checked at both Plﬂilim
. . . char x;
compile time and run time y
= (Casts between (woie Tomua () |
unrelated classes fail Base b; Derl d;

at compile time

= Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

» Can be used like
instanceof
from java

R/

}

_

// OK (run-time check passes)
Base* bptr = dynamic cast<Base*>(&d);
assert (bptr != nullptr);

// OK (run-time check passes)
Derl* dptr =
assert (dptr

dynamic cast<Derl*> (bptr);
!= nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic cast<Derl*> (bptr);

assert (dptr !'= nullptr);

University of Pennsylvania

const_cast

L23: Inheritance & Casting

+ const cast adds or strips const-ness

= Dangerous (!)

[void foo(int* x) |
*x++;
}

volid bar (const int* x)
foo (x);

}

int main(int argc,
int x = 7;
bar (&x) ;

return EXIT SUCCESS;

foo(const cast<int*>(x

{

// compiler error
)); // succeeds

char** argv) {

CIT 5950, Spring 2023

36

University of Pennsylvania L23: Inheritance & Casting

CIT 5950, Spring 2023

reinterpret cast

+ reinterpret cast casts betweenincompatible types
= |ow-level reinterpretation of the bit pattern
" e.g. storing a pointerin an int, or vice-versa
- Works as long as the integral type is “wide” enough
" Converting between incompatible pointers
- Dangerous (!)

= Use any other C++ cast if you can.

37

	Default Section
	Slide 1: Inheritance & Casting Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Logistics
	Slide 4: Logistics
	Slide 5: Lecture Outline
	Slide 6: Dynamic Dispatch (like Java)
	Slide 7: Requesting Dynamic Dispatch (C++)
	Slide 8: Reminder: virtual is “sticky”
	Slide 9: Most-Derived
	Slide 10: Practice Question
	Slide 11: Practice Question
	Slide 12: What happens if we omit “virtual”?
	Slide 13: Practice Question
	Slide 14: Practice Question
	Slide 16: Why Not Always Use virtual?
	Slide 17: Dispatch Decision Tree
	Slide 18: Mixed Dispatch Example
	Slide 19: Practice Question
	Slide 20: Practice Question
	Slide 22: Derived-Class Objects
	Slide 23: Demo: From structs to objects
	Slide 24: Lecture Outline
	Slide 25: Constructors and Inheritance
	Slide 26: Constructor Examples
	Slide 27: Destructors and Inheritance
	Slide 28: Assignment and Inheritance
	Slide 29: STL and Inheritance
	Slide 30: STL and Inheritance
	Slide 31: Lecture Outline
	Slide 32: Explicit Casting in C
	Slide 33: Casting in C++
	Slide 34: static_cast
	Slide 35: dynamic_cast
	Slide 36: const_cast
	Slide 37: reinterpret_cast

