
CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Inheritance & Casting
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

❖ Any questions from previous lectures?

2

pollev.com/tqm

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Logistics

❖ HW4 Posted Due Thursday 4/20 @ 11:59

❖ Project Released! Due Wednesday 4/26 @ 11:59

❖ Travis has extra Office Hours from 10:15 am to 12:15 pm
this Thursday 4/13

3

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Logistics

❖ Final Exam Scheduling:

▪ 96 hours (4 days)

▪ Opens Tuesday May 2nd @ Noon

▪ Closes Saturday May 6th @ noon

4

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ Reference: C++ Primer, Chapter 15

5

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Dynamic Dispatch (like Java)

❖ Usually, when a derived function is available for an object,
we want the derived function to be invoked

▪ This requires a run time decision of what code to invoke

❖ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

▪ Can determine what to invoke from the object itself

❖ Example:
▪ void PrintStock(Stock* s) { s->Print(); }

▪ Calls the appropriate Print() without knowing the actual type
of *s, other than it is some sort of Stock

6

Is this a Stock or a

DividendStock ?

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Requesting Dynamic Dispatch (C++)

❖ Prefix the member function declaration with the
virtual keyword

▪ Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

▪ This is how method calls work in Java (no virtual keyword needed)

▪ You almost always want functions to be virtual

7

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Reminder: virtual is “sticky”

❖ If X::f() is declared virtual, then a vtable will be
created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) f

❖ f() will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword
▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’ll sometimes see both, particularly in older code

8

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Most-Derived

9

class A {

public:

// Foo will use dynamic dispatch

virtual void Foo();

};

class B : public A {

public:

// B::Foo overrides A::Foo

void Foo();

};

class C : public B {

// C inherits B::Foo()

};

void Bar() {

A* a_ptr;

C c;

a_ptr = &c;

// Whose Foo() is called?

a_ptr->Foo();

}

Has Foo definition

A

B

C

// B::Foo

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
10

class A {

public:

virtual void Foo();

};

class B : public A {

public:

void Foo();

};

class C : public B {

};

class D : public C {

public:

void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

A a;

D d;

// Q1:

a_ptr = &a;

a_ptr->Foo();

// Q2:

a_ptr = &d;

a_ptr->Foo();

}

pollev.com/tqm

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. B B

D. B D

E. We’re lost…
11

class A {

public:

virtual void Foo();

};

class B : public A {

public:

void Foo();

};

class C : public B {

};

class D : public C {

public:

void Foo();

};

class E : public C {

};

void Bar() {

A* a_ptr;

A a;

D d;

// Q1:

a_ptr = &a;

a_ptr->Foo();

// Q2:

a_ptr = &d;

a_ptr->Foo();

}

A

B

C

D E

A::Foo()

D::Foo()

pollev.com/tqm

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched
statically
▪ At compile time, the compiler writes in a call to the address of

the class’ method in the .text segment

• Based on the compile-time visible type of the callee

▪ This is different than Java

12

class Derived : public Base { ... };

int main(int argc, char** argv) {

Derived d;

Derived* dp = &d;

Base* bp = &d;

dp->foo();

bp->foo();

return EXIT_SUCCESS;

}

Derived::foo()

...

Base::foo()

...

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. D B

D. D D

E. We’re lost…
13

class A {

public:

void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

void Foo();

};

class E : public C {

};

void Bar() {

D d;

A* a_ptr = &d;

C* c_ptr = &d;

// Q1:

a_ptr->Foo();

// Q2:

c_ptr->Foo();

}

test.cc

pollev.com/tqm

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Practice Question

❖ Whose Foo() is called?

Q1 Q2

A. A B

B. A D

C. D B

D. D D

E. We’re lost…
14

class A {

public:

void Foo();

};

class B : public A {

public:

virtual void Foo();

};

class C : public B {

};

class D : public C {

public:

void Foo();

};

class E : public C {

};

void Bar() {

D d;

A* a_ptr = &d;

C* c_ptr = &d;

// Q1:

a_ptr->Foo();

// Q2:

c_ptr->Foo();

}

test.cc

A

E

Key:

Static dispatch

Dynamic dispatch

D

C

B

A::foo

D::foo

pollev.com/tqm

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

• A class with no virtual functions has objects without a vptr field

▪ Control:

• If f() calls g() in class X and g is not virtual, we’re guaranteed to
call X::g() and not g() in some subclass

– Particularly useful for framework design

❖ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

❖ In C++ and C#, you can pick what you want

▪ Omitting virtual can cause obscure bugs

▪ (Most of the time, you want member function to be virtual)
16

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Dispatch Decision Tree

❖ Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function
▪ If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time

▪ If called via a pointer or reference:
PromisedT* ptr = new ActualT;

ptr->Fcn(); // which version is called?

17

Try to understand why

the flow chart works, and

not only memorize it

Demo later in lecture

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Mixed Dispatch Example

18

class A {

public:

// m1 will use static dispatch

void m1() { cout << "a1, "; }

// m2 will use dynamic dispatch

virtual void m2() { cout << "a2"; }

};

class B : public A {

public:

void m1() { cout << "b1, "; }

// m2 is still virtual by default

void m2() { cout << "b2"; }

};

void main(int argc,

char** argv) {

A a;

B b;

A* a_ptr_a = &a;

A* a_ptr_b = &b;

B* b_ptr_a = &a;

B* b_ptr_b = &b;

a_ptr_a->m1(); //

a_ptr_a->m2(); //

a_ptr_b->m1(); //

a_ptr_b->m2(); //

b_ptr_b->m1(); //

b_ptr_b->m2(); //

}

mixed.cc

A

B

virtual

(remember, virtual is “sticky”)

Key:
Static dispatch
Dynamic dispatch

promisedType

actualType

Compiler error

A::m1

A::m1

B::m1

A::m2

B::m2

B::m2

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Practice Question

❖ Apply what you’ve learned to a more
complex example!

❖ What is printed?

A. HI

B. HA

C. Compiler Error

D. Segmentation
fault

E. We’re lost…
19

class A {

public:

virtual void Foo() {

cout << "H";

this->Bar();

}

void Bar() {

cout << "A";

}

};

class B : public A {

public:

virtual void Bar() {

cout << "I";

}

};

int main() {

B b;

B* b_ptr = &b;

// Q:

b_ptr->Foo();

}

poll.cc

pollev.com/tqm

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Practice Question

❖ Apply what you’ve learned to a more
complex example!

❖ What is printed?

A. HI

B. HA

C. Compiler Error

D. Segmentation
fault

E. We’re lost…
20

class A {

public:

virtual void Foo() {

cout << "H";

this->Bar();

}

void Bar() {

cout << "A";

}

};

class B : public A {

public:

virtual void Bar() {

cout << "I";

}

};

int main() {

B b;

B* b_ptr = &b;

// Q:

b_ptr->Foo();

}

If we removed “this->”

we would get same behaviour

"this"

is of type A*

in this context

So, static dispatch

poll.cc

pollev.com/tqm

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

▪ No guarantees about how these are laid out in memory (not even
contiguousness between sub-objects)

▪ Base sub-object usually first in memory on Linux

❖ Conceptual structure of DividendStock object:

22

symbol_

total_shares_

total_cost_

current_price_

dividends_

members inherited
from Stock

members defined by
DividendStock

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Demo: From structs to objects

❖ See static_dispatch/

▪ How do you properly handle memory management?

• Ignores dynamic dispatch for now

❖ See dynamic_dispatch/

▪ Rewriting static_dispatch code to hold vtables and dynamic
dispatch?

23

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ Reference: C++ Primer, Chapter 15

24

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Constructors and Inheritance

❖ A derived class does not inherit the base class’
constructor

▪ The derived class must have its own constructor

▪ A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

• Compiler error if the base class has no default constructor

▪ The base class constructor is invoked before the constructor of
the derived class

• You can use the initialization list of the derived class to specify which
base class constructor to use

25

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Constructor Examples

26

class Base { // no default ctor

public:

Base(int yi) : y(yi) { }

int y;

};

// Compiler error when you try to

// instantiate a Der1, as the

// synthesized default ctor needs

// to invoke Base's default ctor.

class Der1 : public Base {

public:

int z;

};

class Der2 : public Base {

public:

Der2(int yi, int zi)

: Base(yi), z(zi) { }

int z;

};

badctor.cc

// has default ctor

class Base {

public:

int y;

};

// works now

class Der1 : public Base {

public:

int z;

};

// still works

class Der2 : public Base {

public:

Der2(int zi) : z(zi) { }

int z;

};

goodctor.cc

Compiler

error

No default

ctor

Invokes a specific ctor

Because base has

default ctor

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Destructors and Inheritance

❖ Destructor of a derived
class:

▪ First runs body of the dtor

▪ Then invokes of the dtor
of the base class

❖ Static dispatch of
destructors is almost
always a mistake!

▪ Good habit to always
define a dtor as virtual

• Empty body if there’s
no work to do

27

class Base {

public:

Base() { x = new int; }

~Base() { delete x; }

int* x;

};

class Der1 : public Base {

public:

Der1() { y = new int; }

~Der1() { delete y; }

int* y;

};

void foo() {

Base* b0ptr = new Base;

Base* b1ptr = new Der1;

delete b0ptr; //

delete b1ptr; //

}

baddtor.cc

Not virtual,

Static dispatch

Both invoke Base dtor!!!!

b0ptr

b1ptr

x

x y

delete’s x

delete’s x, but not y

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Assignment and Inheritance

❖ C++ allows you to assign
the value of a derived
class to an instance of
a base class

▪ Known as object slicing

• It’s legal since b = d
passes type checking rules

• But b doesn’t have space
for any extra fields in d

28

class Base {

public:

Base(int xi) : x(xi) { }

int x;

};

class Der1 : public Base {

public:

Der1(int yi) : Base(16), y(yi) { }

int y;

};

void foo() {

Base b(1);

Der1 d(2);

d = b; //

b = d; //

}

slicing.cc

x 1

x 16 y 2

Compiler error – not enough info

ok, What happens to y?

Y is not copied over.

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

STL and Inheritance

❖ Recall: STL containers store copies of values

▪ What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

▪ You get sliced

29

#include <list>

#include "Stock.h"

#include "DividendStock.h"

int main(int argc, char** argv) {

Stock s;

DividendStock ds;

list<Stock> li;

li.push_back(s); // OK

li.push_back(ds); // OUCH!

return EXIT_SUCCESS;

}

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL
containers

▪ No slicing! ☺

▪ sort() does the wrong thing

▪ You have to remember to delete your objects before

destroying the container

• Unless you use Smart pointers!

30

Vector<Stock*>

Sorts by address value on default

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ C++ Casting

❖ Reference: C++ Primer §4.11.3, 19.2.1

31

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Doesn’t change the data, but treats it differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but sometimes the
intent is not clear

32

lhs = (new_type) rhs;

(void*) my_ptr

(double) my_int

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

Casting in C++

❖ C++ provides an alternative casting style that is more
informative:
▪ static_cast<to_type>(expression)

▪ dynamic_cast<to_type>(expression)

▪ const_cast<to_type>(expression)

▪ reinterpret_cast<to_type>(expression)

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

33

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

▪ casting void* to T*

▪ Non-pointer conversion

• e.g. float to int

❖ static_cast is
checked at compile time

34

class A {

public:

int x;

};

class B {

public:

float y;

};

class C : public B {

public:

char z;

};

void foo() {

B b; C c;

// compiler error

A* aptr = static_cast<A*>(&b);

// OK

B* bptr = static_cast<B*>(&c);

// compiles, but dangerous

C* cptr = static_cast<C*>(&b);

}

staticcast.cc

Any well-defined conversion
A

B

C

Unrelated types

Would have worked without cast

What happens when you do cptr->z?

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

dynamic_cast
❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

❖ dynamic_cast is checked at both
compile time and run time
▪ Casts between

unrelated classes fail
at compile time

▪ Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

❖ Can be used like
instanceof

from java
35

void bar() {

Base b; Der1 d;

// OK (run-time check passes)

Base* bptr = dynamic_cast<Base*>(&d);

assert(bptr != nullptr);

// OK (run-time check passes)

Der1* dptr = dynamic_cast<Der1*>(bptr);

assert(dptr != nullptr);

// Run-time check fails, returns nullptr

bptr = &b;

dptr = dynamic_cast<Der1*>(bptr);

assert(dptr != nullptr);

}

dynamiccast.cc
class Base {

public:

virtual void foo() { }

float x;

};

class Der1 : public Base {

public:

char x;

};

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

36

void foo(int* x) {

*x++;

}

void bar(const int* x) {

foo(x); // compiler error

foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {

int x = 7;

bar(&x);

return EXIT_SUCCESS;

}

CIT 5950, Spring 2023L23: Inheritance & CastingUniversity of Pennsylvania

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

▪ Use any other C++ cast if you can.

37

	Default Section
	Slide 1: Inheritance & Casting Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3: Logistics
	Slide 4: Logistics
	Slide 5: Lecture Outline
	Slide 6: Dynamic Dispatch (like Java)
	Slide 7: Requesting Dynamic Dispatch (C++)
	Slide 8: Reminder: virtual is “sticky”
	Slide 9: Most-Derived
	Slide 10: Practice Question
	Slide 11: Practice Question
	Slide 12: What happens if we omit “virtual”?
	Slide 13: Practice Question
	Slide 14: Practice Question
	Slide 16: Why Not Always Use virtual?
	Slide 17: Dispatch Decision Tree
	Slide 18: Mixed Dispatch Example
	Slide 19: Practice Question
	Slide 20: Practice Question
	Slide 22: Derived-Class Objects
	Slide 23: Demo: From structs to objects
	Slide 24: Lecture Outline
	Slide 25: Constructors and Inheritance
	Slide 26: Constructor Examples
	Slide 27: Destructors and Inheritance
	Slide 28: Assignment and Inheritance
	Slide 29: STL and Inheritance
	Slide 30: STL and Inheritance
	Slide 31: Lecture Outline
	Slide 32: Explicit Casting in C
	Slide 33: Casting in C++
	Slide 34: static_cast
	Slide 35: dynamic_cast
	Slide 36: const_cast
	Slide 37: reinterpret_cast

