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% Any questions from previous lectures?
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Logistics

+» HW4 Posted Due Thursday 4/20 @ 11:59

+» Project Released! Due Wednesday 4/26 @ 11:59

+ Travis has extra Office Hours from 10:15 am to 12:15 pm
this Thursday 4/13
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Logistics

% Final Exam Scheduling:
" 96 hours (4 days)
= Opens Tuesday May 2" @ Noon
= Closes Saturday May 61" @ noon

CIT 5950, Spring 2023
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Lecture Outline

«+ C++ Inheritance
= Static Dispatch
® Constructors and Destructors

" Assignment

+» C++ Casting

+ Reference: C++ Primer, Chapter 15
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Dynamic Dispatch (like Java)

+ Usually, when a derived function is available for an object,
we want the derived function to be invoked

= This requires a run time decision of what code to invoke

+ A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type
= Can determine what to invoke from the object itself

Ts this a Stock or a

« Example: / DividendStock 7

" void PrintStock (Stock* s) { s->Print(),; }

= Calls the appropriate Print () without knowing the actual type
of *s, other than it is some sort of Stock




L23: Inheritance & Casting CIT 5950, Spring 2023

University of Pennsylvania

Requesting Dynamic Dispatch (C++)

+ Prefix the member function declaration with the

virtual keyword

= Derived/child functions don’t need to repeat virtual, but was
traditionally good style to do so

" This is how method calls work in Java (no virtual keyword needed)

" You almost always want functions to be virtual
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Reminder: virtual is “sticky”

« IfX::£ () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) £

« £ () will be called using dynamic dispatch even if
overridden in a derived class without the virtual

keyword
" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code
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Most-Derived

(class A { b
public:
// Foo will use dynamic dispatch
virtual void Foo () ; (void Bar() { ]
}s A* a ptr;
C c;
class B : public A {
public: a ptr = &c;
// B::Foo overrides A::Foo
void Foo () ; // Whose Foo () 1is called?
}; a_ptr—>Foo();//Eﬂ?oo
}
class C : public B { : ’
// C inherits B::Foo()
CK ) »

Has Foo definition e
(& 9
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@ Poll Everywhere pollev.com/tqm

+ Whose Foo () is called? class A {
public:

virtual void Foo () ;

¥

void Bar() class B : public A {

A% a_ptr; public:
A aj void Foo () ;
D d;

I
Ql Q2 // 01:

class C : public B {

A. a ptr = &a; I
a ptr->Foo ()
B. A D - class D : public C {
/) 02 public:
C. B B a ptr = &d; void Foo();
D. B D a ptr->Foo () ; bi
\} ) | class E : public C {
E. We're lost... };

10
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@ Poll Everywhere pollev.com/tqm

+ Whose Foo () is called? class A {
public:

virtual void Foo () ;

@ ¥

@ void Bar() class B : public A {

e A* a_ptr; public:
A aj void Foo () ;

e e D d; };
Q Q2 // Ql:

class C : public B {
\ a ptr = &a; I

A.
a ptr->Foo () ; |
B. A D \ B AxFoo() class D : public C {
// 02: public:
C. B B \a ptr = &d; volid Foo () ;
N . I
D. B D a_ptr—>bﬁ"oo(),
U PiFool ) | class E : public C {

E. We're lost... ]

11
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What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched

statically
= At compile time, the compiler writesina call to the address of
the class’ method in the . text segment

- Based on the compile-time visible type of the callee

" This is different than Java

[ class Derived : public Base { ... };
» Derived: :foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;

Base* bp = &d;
dp->foo () ; » Base::foo()
bp->foo () ;

return EXIT SUCCESS;

12
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@ Poll Everywhere pollev.com/tqm

«» Whose Foo () is called? test.cc

class A {
public:
void Foo () ;

bg

class B : public A {
public:
[ void Bar () { virtual void Foo () ;

Ql QZ D d; }i

A. A* a ptr = &d; c%ass C : public B {
C* c ptr = &d; bi
B. A D y class D : public C {
Q1: N
public:
Co D B a_ptr—>Foo () void Foo () ;
§ e
D. D D // Q2:
c_ptr->Foo () ; class E : public C {
E. We're lost... ) };

13
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@ Poll Everywhere

«» Whose Foo () is called?

Q1 Q2

A.

B. A D

C. D B

D. D D

E. We're lost...

Key:
Static dispateh
Dynamic dispateh

CIT 5950, Spring 2023

pollev.com/tqm

[ void Bar () {
D d;

A* a ptr = &d;
C* ¢ ptr = &d;

// 01: Aufoo
a ptr->Foo () ;

// 02: Dufoo
c ptr->Foo () ;

}

\

test.cc
class A {
public:
void Foo () ;
}i
class B : public A {
public:

virtual void Foo () ;

b g

class C : public B {
I

class D : public C {
public:

void Foo () ;

b g

class E

b g

: public C {

14
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Why Not Always Use virtual?

+» Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)

- A class with no virtual functions has objects without a vptr field

= Control:

- If £() callsg () inclass X and g is not virtual, we’re guaranteed to
call X::g () and not g () in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

*

L)

D)

- In C++ and C#, you can pick what you want

" Omitting virtual can cause obscure bugs

= (Most of the time, you want member function to be virtual)
16
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Dispatch Decision Tree

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. ob7 .Fecn () ), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
PromisedT* ptr = new ActualT;
ptr->Fen(); // which version 1is called?

'

Is Fen () Yes 3 PSRl =ONTE B [FE, W Yes Dynamic dispatch of
. : marked virtual in : \
defined in P  cedT or in classes it - most-derived version of
PromisedT? rom'lsel Fcn () visible to ActualT
derives from? ———

l No l No Try to understand why
the flow chart works, and
not only meworize it
Demo later n lecture

Compiler Static dispatch of
Error PromisedT::Fcn()

17
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Mixed Dispatch Example

Key:
Static dispatch
mixed.cc Dynamic dispatch
(class A { \( void main (int argc, b
public: char** argv) {
// ml will use static dispatch A ay :
romised Type
void ml () { cout << "al, "; } B b; prom : ﬁ?
// m2 will use dynamic dispatch . ) !QE ?ﬁ.WPG
virtual void m2() { cout << "a2"; } a_ptr_a = &a;

A* a ptr b = &b;

B*¥ b ptr—a—=—&a; Compiler error
B* b ptr b = &b;

[

class B : public A { e
public: @
void ml() { cout << "bl, "; }

// m2 is still virtual by default
Virtpal void m2 () { cout << "b2"; }

a ptr a->ml(); // Aum
a ptr a->m2(); // Awm2

a ptr b->ml(); // A

b7
~ : ] ; / tr b->m2 () 5 // N
(remember, virtual is “sticky”) a_ptr_ Bum2

b ptr b->ml1(); // Buml
b_ptr_b—>m2 () // 'B::VV\Z
}

\. J

18
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@ Poll Everywhere pollev.com/tqm

+ Apply what you’ve learned to a more

complex example! , poll.cc
. . class A {
+» What s printed? public:
virtual void Foo () {

cout << "H'";
this->Bar () ;

}

l\- void Bar () {
B HA cout << "A";
. }
. ; : I
C. Compiler Error |int main() {
) B b; class B : public A {
D. Segmentation B* b_ptr = &b; public:
faL"t virtual void Bar () {
// Q.' cout << "I";
b ptr->Foo () ;
E. We're lost... . -

19
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@ Poll Everywhere pollev.com/tqm

+ Apply what you’ve learned to a more

complex example! , poll.cc
. . class A {
+» What s printed? public:
"this" virtual void Foo () {
Is of type A" cout << "H";
m this context this->Bar();
So, static dispatch }
A. If we removed “this—>" void Bar() {
we would aet same behaviour COLE
B. HA 9 |
g . , i
C. Compiler Error |int main() {
. B b; class B : public A {
D. Segmentation B* b_ptr = &b; public:
f It virtual void Bar () {
au [/ Q: cout << "I1I";

b ptr->Foo () ; }

E. We're lost... } .

20
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Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between sub-objects)

= Base sub-object usually first in memory on Linux

+» Conceptual structure of DividendStock object:

symbol
members inherited total shares
from Stock total cost

current price

members defined by
DividendStock

dividends

22
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Demo: From structs to objects

+ See static dispatch/

"= How do you properly handle memory management?
- Ignores dynamic dispatch for now

+ See dynamic dispatch/

= Rewriting static_dispatch code to hold vtables and dynamic
dispatch?

23
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Lecture Outline

+» C++ Inheritance
= Static Dispatch
= Constructors and Destructors
= Assighment

+» C++ Casting

+ Reference: C++ Primer, Chapter 15

24



University of Pennsylvania

L23: Inheritance & Casting

CIT 5950, Spring 2023

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

® The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

- Compiler error if the base class has no default constructor

" The base class constructor is invoked before the constructor of
the derived class

« You can use the initialization list of the derived class to specify which
base class constructor to use

25
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Constructor Examples

L23: Inheritance & Casting
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goodctor.cc

badctor.cc
[ class Base { // no default ctor
public:
Base (int yi) y(yi) { }
int y;

b g

// Compiler error when you try to
// 1instantiate a Derl, as the

// synthesized default ctor needs
// to invoke Base's default ctor.

Cowmpiler
error ®
No defanl+
ctor

class Der?2

public Base {
public:
Der2 (int yi, int zi)
Base (yi), z(zi) { }
int z; ™ Tuvokes a specific ctor
I

.

class Base {
public:

int y;
¥

// works now
class Derl

class Der?
public:

int z;

b g

\.

[ // has default ctor

public:
int z; Because base has
}; defanlt ctor
// still works l

Der?2 (int z1i)

\

public Base {

public Base {

z(z1i) { }

26
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Destructors and Inheritance

« Destructor of a derived
class:
" First runs body of the dtor

® Then invokes of the dtor
of the base class

+ Static dispatch of
destructors is almost
always a mistake!

" Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

baddtor.cc
(class Base { )
public:
Base() { x = new int; }

~Base () { delete x; }NU%VW*MN,

int* x; Static dispateh

b g

class Derl : public Base {

public:
Derl() { y = new 1nt; }
~Derl () { delete y; }

e AT K
[ lﬂOP+V —| X /
b’\P‘W —_— ‘
void foo () {

Base* bOptr =
Base* blptr =

new Base;
new Derl;

delete bOptr; // delete’sx
delete blptr; //delete’s x, but not y

L } Both invoke Base dtorllll )

27
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Assignment and Inheritance

% C++ allows you to assign
the value of a derived
class to an instance of
a base class
" Known as object slicing

- It’slegal sinceb = d
passes type checking rules

- But b doesn’t have space
for any extra fields in d

CIT 5950, Spring 2023

slicing.cc

(class Base

public:
Base (1nt
int x;

b g

class Derl

public:
Derl (1int
int y;

} i

volid foo ()
Base b (1
Derl d(2

d =
b =

b;
d;

{

xi) : x(xi) { 1}
<[]

: public Base {

yi) : Base(16), y(yi) { }

X @]l v

2

)

{
) ;
// Compiler error — not enoungh vfo
// ok, What happens +to 7

V' is not copied over.

N

28
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STL and Inheritance

+ Recall: STL containers store copies of values

" What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

" You get sliced ®

[ #include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 1i;

1i.push back (s); // OK
li.push back(ds); // OUCH!

return EXIT SUCCESS;

29
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STL and Inheritance

+» Instead, store pointers to heap-allocated objects in STL
containers

= Noslicing! © Vector<Stock*s
" sort () doesthe wrong thing ® Sorts by address value on defanlt

" You have to remember to de 1l et e your objects before
destroying the container ®
« Unless you use Smart pointers!

30
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Lecture Outline

« C++ Inheritance
= Static Dispatch
® Constructors and Destructors

" Assignment

+» C++ Casting

+» Reference: C++ Primer §4.11.3, 19.2.1

31
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Explicit Casting in C

+ Simple syntax: [ lhs
+ Used to:

" Convert between pointers of arbitrary type  (\id*) my ptr

(new type) rhs;

- Doesn’t change the data, but treats it differently

" Forcibly convert a primitive type to another  (double) my_int
- Actually changes the representation

% You can still use C-style casting in C++, but sometimes the
intent is not clear

32
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Casting in C++

+» C++ provides an alternative casting style that is more
informative:

" statlc cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+ Always use these in C++ code

" |ntent is clearer

= Easier to find in code via searching

33
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static_cast

Any well-defined cowversion

+ static cast canconvert:

+ static castis
checked at compile time

Pointers to classes of related type

- Compiler error if classes are not related
- Dangerous to cast down a class hierarchy

casting void* to T*
Non-pointer conversion
- e.g. floattoint

L23: Inheritance & Casting

staticcast.cc

rclass A {
public: (:)

N\

int x;

b

class B {

public:
float y; e
} i
class C : public B {
public:
char z;

b g

\

void

//
A *
//
B*
//
C*

foo () {

B b; C c;

compiler error Wirelated types
aptr = static cast<A*>(&b);
oK Would have worked without cast
bptr = static cast<B*>(&c);
compiles, but dangerous

cptr = static cast<C*>(&b);

1 What happeus whev you do cptr->z7

34
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dynamiccast.cc

- 1 B
dynamic cast RS
« dynamic cast can convert: virtual void foo() { }
o float x;
= Pointers to classes of related type )

= References to classes of related type

class Derl public Base {

» dynamic cast is checked at both Plﬂilim
. . . char x;
compile time and run time y
= (Casts between (woie Tomua () |
unrelated classes fail Base b; Derl d;

at compile time

= Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

» Can be used like
instanceof
from java

R/

}

\_

// OK (run-time check passes)
Base* bptr = dynamic cast<Base*>(&d);
assert (bptr != nullptr);

// OK (run-time check passes)
Derl* dptr =
assert (dptr

dynamic cast<Derl*> (bptr);
!= nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic cast<Derl*> (bptr);

assert (dptr !'= nullptr);
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const_cast

L23: Inheritance & Casting

+ const cast adds or strips const-ness

= Dangerous (!)

[ void foo(int* x) |
*x++;
}

volid bar (const int* x)
foo (x);

}

int main(int argc,
int x = 7;
bar (&x) ;

return EXIT SUCCESS;

foo(const cast<int*>(x

{

// compiler error
)); // succeeds

char** argv) {

CIT 5950, Spring 2023

36
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reinterpret cast

+ reinterpret cast casts betweenincompatible types
= |ow-level reinterpretation of the bit pattern
" e.g. storing a pointerin an int, or vice-versa
- Works as long as the integral type is “wide” enough
" Converting between incompatible pointers
- Dangerous (!)

= Use any other C++ cast if you can.

37
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