
CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Casting & std::optional
Computer Systems Programming, Spring 2023

Instructor: Travis McGaha

TAs:

Kevin Bernat Jialin Cai

Mati Davis Donglun He

Chandravaran Kunjeti Heyi Liu

Shufan Liu Eddy Yang

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

❖ What courses are you planning to take next?

2

pollev.com/tqm

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

❖ Any questions from previous lectures?

3

pollev.com/tqm

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Logistics

❖ HW4 Posted Due Thursday 4/20 @ 11:59

❖ Project Released! Due Wednesday 4/26 @ 11:59

❖ HW2 grades & Midterm grades posted later today

▪ Can fix HW2 submissions

▪ Midterm has regrades & the clobber policy

4

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Logistics

❖ Final Exam Scheduling:

▪ 96 hours (4 days)

▪ Opens Tuesday May 2nd @ Noon

▪ Closes Saturday May 6th @ noon

❖ Extra OH today & next Monday from Kevin
@ Levine 501, 5-7 pm

5

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ "Modern C++"

▪ C++ Casting

▪ std::optional & others

❖ Reference: C++ Primer, Chapter 15

6

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Constructors and Inheritance

❖ A derived class does not inherit the base class’
constructor

▪ The derived class must have its own constructor

▪ A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initialize the derived class’ member variables

• Compiler error if the base class has no default constructor

▪ The base class constructor is invoked before the constructor of
the derived class

• You can use the initialization list of the derived class to specify which
base class constructor to use

7

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Constructor Examples

8

class Base { // no default ctor

public:

Base(int yi) : y(yi) { }

int y;

};

// Compiler error when you try to

// instantiate a Der1, as the

// synthesized default ctor needs

// to invoke Base's default ctor.

class Der1 : public Base {

public:

int z;

};

class Der2 : public Base {

public:

Der2(int yi, int zi)

: Base(yi), z(zi) { }

int z;

};

badctor.cc

// has default ctor

class Base {

public:

int y;

};

// works now

class Der1 : public Base {

public:

int z;

};

// still works

class Der2 : public Base {

public:

Der2(int zi) : z(zi) { }

int z;

};

goodctor.cc

Compiler

error

No default

ctor

Invokes a specific ctor

Because base has

default ctor

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Destructors and Inheritance

❖ Destructor of a derived
class:

▪ First runs body of the dtor

▪ Then invokes of the dtor
of the base class

❖ Static dispatch of
destructors is almost
always a mistake!

▪ Good habit to always
define a dtor as virtual

• Empty body if there’s
no work to do

9

class Base {

public:

Base() { x = new int; }

~Base() { delete x; }

int* x;

};

class Der1 : public Base {

public:

Der1() { y = new int; }

~Der1() { delete y; }

int* y;

};

void foo() {

Base* b0ptr = new Base;

Base* b1ptr = new Der1;

delete b0ptr; //

delete b1ptr; //

}

baddtor.cc

Not virtual,

Static dispatch

Both invoke Base dtor!!!!

b0ptr

b1ptr

x

x y

delete’s x

delete’s x, but not y

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Assignment and Inheritance

❖ C++ allows you to assign
the value of a derived
class to an instance of
a base class

▪ Known as object slicing

• It’s legal since b = d
passes type checking rules

• But b doesn’t have space
for any extra fields in d

10

class Base {

public:

Base(int xi) : x(xi) { }

int x;

};

class Der1 : public Base {

public:

Der1(int yi) : Base(16), y(yi) { }

int y;

};

void foo() {

Base b(1);

Der1 d(2);

d = b; //

b = d; //

}

slicing.cc

x 1

x 16 y 2

Compiler error – not enough info

ok, What happens to y?

Y is not copied over.

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

STL and Inheritance

❖ Recall: STL containers store copies of values

▪ What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

▪ You get sliced

11

#include <list>

#include "Stock.h"

#include "DividendStock.h"

int main(int argc, char** argv) {

Stock s;

DividendStock ds;

list<Stock> li;

li.push_back(s); // OK

li.push_back(ds); // OUCH!

return EXIT_SUCCESS;

}

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL
containers

▪ No slicing! ☺

▪ sort() does the wrong thing

▪ You have to remember to delete your objects before

destroying the container

• Unless you use Smart pointers!

12

Vector<Stock*>

Sorts by address value on default

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ "Modern C++"

▪ C++ Casting

▪ std::optional & others

❖ Reference: C++ Primer, Chapter 15

13

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Modern C++ in this course?

❖ This course did not teach “the best” way to code in C++

▪ This is a systems programming course, not a C++ course

❖ Many goals in this course:

▪ Give you core systems knowledge

▪ Prepare you for future courses

• Some are in C

• Some are in C++

❖ C is NOT C++ and vice-versa

14

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Previously: How to Think About C++

15

Set of styles
and ways to

use C++

Set of styles
and ways to

use C

Good styles
and robust
engineering

practices

What is good style
& practice in C may
NOT be good style
& practice in C++

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Modern C++: what is it?

❖ What is modern changes, but it is making use of the
modern features of C++

❖ This includes

▪ Vast use of C++ STL

• vector, map, list, set, pair

▪ Range for loops

• E.g. for (auto& e : vec) {

▪ Exceptions

▪ RAII

▪ …

16

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Modern C++: what is it?

❖ This also means almost completely moving away from C
style and doing things with C++
▪ Stop using char*, use std::string

▪ Stop using C style array, use std::array

▪ Stop using C-style casts, uses C++ casts (more in a second)

▪ Mostly avoid malloc()/free() and new/delete.

• make_unique and make_shared

• STL containers

▪ Stop returning an int and using output params

• Use structured binding, std::optional, std::variant, etc…

❖ Unavoidable at times, if the intention is to interface with
C code

17

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Continuing to learn C++

❖ There is so much to C++, you do not have to know it all to
be a good C++ dev.

▪Practice makes perfect
▪ Before you can be kinda good at something,

you have to be bad at it first

❖ Many resources out there, here is one:

▪ C++ Core Guidelines

▪ https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

▪ Goes over what is good practice and what is not. Not everything
may make sense, that is ok. Take it slow, feel free to skip around

18

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

❖ Used to:

▪ Convert between pointers of arbitrary type

• Doesn’t change the data, but treats it differently

▪ Forcibly convert a primitive type to another

• Actually changes the representation

❖ You can still use C-style casting in C++, but sometimes the
intent is not clear

19

lhs = (new_type) rhs;

(void*) my_ptr

(double) my_int

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Casting in C++

❖ C++ provides an alternative casting style that is more
informative:
▪ static_cast<to_type>(expression)

▪ dynamic_cast<to_type>(expression)

▪ const_cast<to_type>(expression)

▪ reinterpret_cast<to_type>(expression)

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

20

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

static_cast

❖ static_cast can convert:

▪ Pointers to classes of related type

• Compiler error if classes are not related

• Dangerous to cast down a class hierarchy

▪ casting void* to T*

▪ Non-pointer conversion

• e.g. float to int

❖ static_cast is
checked at compile time

21

class A {

public:

int x;

};

class B {

public:

float y;

};

class C : public B {

public:

char z;

};

void foo() {

B b; C c;

// compiler error

A* aptr = static_cast<A*>(&b);

// OK

B* bptr = static_cast<B*>(&c);

// compiles, but dangerous

C* cptr = static_cast<C*>(&b);

}

staticcast.cc

Any well-defined conversion
A

B

C

Unrelated types

Would have worked without cast

What happens when you do cptr->z?

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

dynamic_cast
❖ dynamic_cast can convert:

▪ Pointers to classes of related type

▪ References to classes of related type

❖ dynamic_cast is checked at both
compile time and run time
▪ Casts between

unrelated classes fail
at compile time

▪ Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

❖ Can be used like
instanceof

from java
22

void bar() {

Base b; Der1 d;

// OK (run-time check passes)

Base* bptr = dynamic_cast<Base*>(&d);

assert(bptr != nullptr);

// OK (run-time check passes)

Der1* dptr = dynamic_cast<Der1*>(bptr);

assert(dptr != nullptr);

// Run-time check fails, returns nullptr

bptr = &b;

dptr = dynamic_cast<Der1*>(bptr);

assert(dptr != nullptr);

}

dynamiccast.cc
class Base {

public:

virtual void foo() { }

float x;

};

class Der1 : public Base {

public:

char x;

};

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

23

void foo(int* x) {

*x++;

}

void bar(const int* x) {

foo(x); // compiler error

foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {

int x = 7;

bar(&x);

return EXIT_SUCCESS;

}

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

▪ e.g. storing a pointer in an int, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

▪ Use any other C++ cast if you can.

24

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Constructors and Destructors

▪ Assignment

❖ "Modern C++"

▪ C++ Casting

▪ std::optional & others

25

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Functions that sometimes fail

❖ It is pretty common to write functions that sometimes
fail. Sometimes they don’t return what is expected

❖ Consider we were building up a Queue data structure that
held strings, that could

▪ Add elements to the end of a sequence

• void

▪ Remove elements from the beginning of a sequence

▪ How do we design this type to

26

void add(string data);

???? remove(????);

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Previous ways to handle failing functions

❖ Return an "invalid" value: e.g. if looking for an index,
return -1 if it can’t be found.

▪ What if there is no nice "invalid" state?

❖ C-style: return an error code or success/failure.
Real output returned through output param

27

// what is an invalid string?

string remove();

bool remove(string* output);

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Previous ways to handle failing functions

❖ Return a pointer to a heap allocated object, could return
nullptr on error

▪ Uses the heap when it is otherwise unnecessary

▪ Need to remember to delete the string

❖ Java style: throw an exception in the case of an error
return the value as normal

▪ Exceptions not best for performance

▪ Exception catching not always the easiest to handle

28

string* remove();

string remove() {

if (this->size() <= 0U) {

throw std::out_of_range("Error!");

}

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

std::optional

❖ optional<T> is a struct that can either:

▪ Have some value T
(optional<string> {"Hello!"})

▪ Have nothing
(nullopt)

❖ optional<T> effectively extends the type T to have a
"null" or "invalid" state

❖ How is this much better at all?

▪ Code demo: Queue.h and use_queue.cc

29

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Monadic optional

❖ If all we had from optional<T> was that it could be
something or nothing, then our error handling code would
still just be a bunch of if statements

30

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Monadic optional

❖ As of C++ 23, std::option can be used with new member
functions

❖ and_then

❖ map (now called transform)

▪ These functions call the specified function on the value in the
option, or just return nullopt if it is not available.

❖ See use_queue.cc for an example

31

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Optional in other languages

❖ Languages which have their own optional-like type with
this monadic interface:

▪ Java

▪ Swift

▪ Haskell

▪ Rust

▪ Ocaml

▪ Scala

▪ Agda

▪ Idris

▪ Kotlin

▪ StandardML

▪ C#
32

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Other ways to return: std::variant

❖ If your function could return one of two or more different
values, could use std::variant, which indicates it could be
any of the specified types

33

variant<int, float, string> get_some_value();

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

Other ways to return: Structured Binding

❖ If your function could return two or more different values
at the same time could use a struct, tuple or pair

❖ Could access the values manually:

❖ Or use structured binding:

34

pair<int, string> get_some_value();

pair<int, string> p = get_some_value();

int x = p.first();

string y = p.second();

auto [x, y] = get_some_value();

// x and y both exist as variables

// that can be used!

CIT 5950, Spring 2023L24: Casting, & std::optionalUniversity of Pennsylvania

C++23 and beyond!

❖ C++ is still being worked on, with many useful features!

❖ Don’t like #include and dealing with weird header files?

▪ C++ 20 added import statements, can write things like
import std.regex and give more explicit control of what is
visible to others

❖ Don’t like how cout << "hello" << endl?

▪ C++23 is adding std::print. E.g:

• println("hello!");

• print("{0} {2}{1}!\n", "Hello", 23, "C++");

❖ Make sure template types support certain features:
C++ has concepts now!

35

	Default Section
	Slide 1: Casting & std::optional Computer Systems Programming, Spring 2023
	Slide 2
	Slide 3
	Slide 4: Logistics
	Slide 5: Logistics
	Slide 6: Lecture Outline
	Slide 7: Constructors and Inheritance
	Slide 8: Constructor Examples
	Slide 9: Destructors and Inheritance
	Slide 10: Assignment and Inheritance
	Slide 11: STL and Inheritance
	Slide 12: STL and Inheritance
	Slide 13: Lecture Outline
	Slide 14: Modern C++ in this course?
	Slide 15: Previously: How to Think About C++
	Slide 16: Modern C++: what is it?
	Slide 17: Modern C++: what is it?
	Slide 18: Continuing to learn C++
	Slide 19: Explicit Casting in C
	Slide 20: Casting in C++
	Slide 21: static_cast
	Slide 22: dynamic_cast
	Slide 23: const_cast
	Slide 24: reinterpret_cast
	Slide 25: Lecture Outline
	Slide 26: Functions that sometimes fail
	Slide 27: Previous ways to handle failing functions
	Slide 28: Previous ways to handle failing functions
	Slide 29: std::optional
	Slide 30: Monadic optional
	Slide 31: Monadic optional
	Slide 32: Optional in other languages
	Slide 33: Other ways to return: std::variant
	Slide 34: Other ways to return: Structured Binding
	Slide 35: C++23 and beyond!

