
CIT 5950 Recitation 1

C, Pointers, and Codio

1



Agenda
1. Logistics

2. Icebreaker

3. Pointer Review

4. C String Review

5. Output parameters Review 

6. Codio demo + HW1 Intro 

2



Logistics
Pre Semester Survey

Due Tuesday January 24th @ 11:59 pm 

(https://canvas.upenn.edu/courses/1702931/quizzes/2982520)

HW0 (Linked List & Hash Table)

Due Thursday January 26th @ 11:59 pm

3



Icebreaker!
Break up into groups of ~10

Here are some questions to help you guys get to know each other…

● What’s your favorite food

● What would you do with your life if you didn’t have to worry about salary?

● If you were sent to a deserted island and could only bring three movies, 

what would they be?

● Where do you put the ‘*’ in a pointer declaration:

○ int* ptr, int *ptr, int * ptr, etc.
4



Pointer Review

5



Pointers
Pointers are just another 
primitive data type.

An integer can hold an index 
into an array.

If memory is a giant array of 
bytes, then a pointer just holds 
an index into that array.

6

type *name;

int32_t *ptr;

0x7ff….ptr

ptr



510

Pointer Syntax

“Address of”

“Value at”

&

*

7

int32_t x;
int32_t *ptr;

ptr

x

ptr = &x;
x = 5;
*ptr = 10;



Exercise 1

8



9

5

22

42

x

y

z

X (foo)

y (foo)

z (foo)

42

37

Draw a memory diagram like the one above for the following code 
and determine what the output will be.

void foo(int32_t *x, int32_t *y, int32_t *z) {
  x = y;
  *x = *z;
  *z = 37;
}

int main(int argc, char *argv[]) {
  int32_t x = 5, y = 22, z = 42;
  foo(&x, &y, &z);
  printf("%d, %d, %d\n", x, y, z);
  return EXIT_SUCCESS;
}



C-Strings

10



C-Strings

- A string in C is declared as an array of characters that is terminated by a 

null character ‘\0’.

- When allocating space for a string, remember to add an extra character 

for the null terminator.

11

char str_name[size];



char str[6] = "Hello";

Example

12

index 0 1 2 3 4 5

value ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ \0

- If using String literals, C will set it up for you



char* str = "Hello";

Example

13

index 0 1 2 3 4 5

value ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ \0

- You can also use a pointer. C will allocate the characters in read only 

memory, and the pointer will point to the first character in the string.

0x7f..str



Exercise 1 b

14



void bar(char *str) {
  str = "ok bye!";
}

int main(int argc, char *argv[]) {
  char *str = "hello world!";
  bar(str);
  printf("%s\n", str);  // should print "ok bye!"
  return EXIT_SUCCESS;
}

char* str 

char* str

main stack frame

static data

["hello world!\0"]

["ok bye!\0"]

bar stack frame

15

Modifying the argument str in bar will not effect str in main 
because arguments in C are always passed by value. 

In order to modify str in main, we need to pass a pointer to a 
pointer (char **) into bar and then dereference it:

The following code has a bug. What’s the problem, and how would you fix it?



Output Parameters

16



Output Parameters

Definition: a pointer parameter used to store output in a location specified by the caller.

Useful for returning multiple items :)

17



Output Parameter example

Consider the following function: 

void getFive(int ret){
    ret = 5;
}

Will the user get the value '5'?

18

No! You need to use a pointer so that the caller can 

see the change

void getFive(int* ret){
    *ret = 5;
}



Exercise 2

19



char *strcpy(char *dest, char *src) {

}

How is the caller able to see the changes in dest if C is pass-by-value?

Why do we need an output parameter? Why can’t we just return an array we create in strcpy?

20

  char *ret_value = dest;
  while (*src != '\0') {
    *dest = *src;
    src++; 
    dest++; 
  }
  *dest = '\0';  // don’t forget the null terminator!
  return ret_value;

If we allocate an array inside strcpy, it will be allocated on the stack. Thus, we have no control over this memory 
after strcpy returns, which means we can’t safely use the array whose address we’ve returned.

The caller can see the copied over string in dest since we are dereferencing dest. Note that modifications to dest 
that do not dereference will not be seen by the caller(such as dest++). Also note that if you used array syntax, 
then dest[i] is equivalent to *(dest+i).



Codio Demo

21



Exercise 3

22



void product_and_sum(int *input, int length, int *product, int *sum) {

}

23

  int temp_sum = 0;
  int temp_product = 1;
  for (int i = 0; i < length; i++) {
    temp_sum += input[i];
   temp_product *= input[i];
  }
  *sum = temp_sum;
  *product = temp_product;


