
CIT 5950 Recitation 2

Debugging, Structs and the Heap

Logistics

Check-in00
Due Monday January 23rd @ 10:00 am

Pre Semester Survey
Due Tuesday January 24th @ 11:59 pm

HW1 (Linked List & Hash Table)
Due Thursday January 26th @ 11:59 pm

Debugging

Debugging Overview

• Debugging is a skill that you will need throughout your career

• gdb (GNU Debugger) is a debugging tool
• Lots of helpful features to help with debugging
• Very useful in tracking undefined behavior

• Valgrind is a memory debugging tool
• Checks for various memory errors
• If you are running into odd behavior, running valgrind may point out the cause.

Segmentation Faults

•Causes of segmentation fault
• Dereferencing uninitialized pointer
• Null pointer
• A previously freed pointer
• Accessing end of an array
• …

•gdb (GNU Debugger) is very helpful for identifying the source of a
segmentation fault

•backtrace

Other Essential gdb commands

•run <command_line_args>
•backtrace
•frame, up, down
•print <expression>
•quit
•breakpoints

•(see next slide)
gdb reference card w/
commands & details on the
course website.

gdb Breakpoints

• Usage:
• break <function_name>
• break <filename:line#>

• Can advance with:
• continue
• next
• step
• finish

Valgrind & Memory Errors

• Use of uninitialized memory
• Reading/writing memory after it has been freed – Dangling pointers
• Reading/writing to the end of malloc'd blocks
• Reading/writing to inappropriate areas on the stack
• Memory leaks where pointers to malloc'd blocks are lost

Valgrind is your friend!!

Structs and user defined types

Defining Structs

struct fruit_st {
 char* name;
 int price_cents;
};

To define a struct, we use the struct statement.

A struct typically has a name (a tag), and one or more members.

The struct statement defines a new type.

Initialising structs and changing field values

struct fruit_st fruit;
fruit.name = apple;
fruit.price_cents = 10

● By default the fields of a structure are public

● To change the field names or initialise their values we use the

dot (.) operator or the arrow operator (->)

NB:the arrow operator (->) when you have a pointer to a struct

User Defined Types

The C Programming language provides the keyword typedef,

which defines an alternate name for a type

typedef struct fruit_st {
 char* name;
 int price_cents;
} Fruit;

Fruit fruit;
fruit.name = apple;
...

No need for “struct” in type
declaration

The Heap

Dynamically Allocated data

Dynamically allocated data is explicitly allocated and de-allocated

by the program.

Dynamically allocated data persists after a function call

Dynamic vs automatic allocation

// dynamic allocation
int* foo() {
 int* x;
 x = malloc(sizeof(int));
 *x = 595;
 return x;
}

// “Automatic” Allocation
int* foo() {
 int *x;
 int n = 595;
 x = &n;
 return x;
}

x would be pointed to de-allocated memory.
“n” goes away when we return

User Defined Types (malloc)

Fruit* new_fruit = (Fruit*) malloc(sizeof(Fruit));
new_fruit->name = apple;
new_fruit->price_cents = 10

Fruits & Orchards

17

Pointers and Structs

Orchard o;
o.name = “Angry Orchards”;
Fruit f;
f.origin = &o;
f.volume = 5;

main

bt name

origin

volume
apple

"Apple Orchard\0"

applePtr

33

console output

18

int main(int argc, char* argv[]) {
 Orchard bt;
 strcpy(bt.name, "Apple Orchard");

 Fruit apple;
 Fruit* applePtr = &apple;
 apple.origin = &bt;
 apple.volume = 33;
 applePtr->volume = apple.volume;

 printf("1. %d, %s \n",
applePtr->volume,
applePtr->origin->name);

 …

1, 33, Apple Orchard

33

33

"Apple Orchard\0"

main

"Eaten Fruit Orchard\0"bt name

origin

volume 23
apple

applePtr

console output

eatFruit

origin

volume
fruit

23

19

…
apple.volume = eatFruit(apple);
printf("2. %d, %s \n", applePtr->volume,

applePtr->origin->name);

int eatFruit(Fruit fruit) {
 fruit.volume -= 10;
 strcpy(fruit.origin->name,
 "Eaten Fruit Orchard");
 return fruit.volume;
}

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard

2330

"Apple Orchard\0"

main

"Eaten Fruit Orchard\0"bt name

origin

volume
apple

applePtr

console output

growFruit

fruitPtr

20

…
growFruit(applePtr);
printf("3. %d, %s \n", applePtr->volume,

applePtr->origin->name);

void growFruit(Fruit* fruitPtr) {
 fruitPtr->volume += 7;
}

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard

2330

"Apple Orchard\0"

main

"Eaten Fruit Orchard\0"bt name

origin

volume
apple

applePtr

console output

exchangeFruit

fruitPtrPtr

banana

Heap Allocated Memory

name

origin

volume 12

"Banana Orchard"

21

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4, 12, Banana Orchard

void exchangeFruit(Fruit** fruitPtrPtr) {
 Fruit *banana =
 (Fruit*)malloc(sizeof(Fruit));
 banana->volume = 12;
 banana->origin =

(OrchardPtr)malloc(sizeof(Orchard));
 strcpy(banana->origin->name,
 "Banana Orchard");
 *fruitPtrPtr = banana;
}

exchangeFruit(&applePtr);
printf("4. %d, %s \n", applePtr->volume,

applePtr->origin->name);

2330

"Apple Orchard\0"

main

"Eaten Fruit Orchard\0"bt name

origin

volume
apple

applePtr

console output

exchangeFruit

fruitPtrPtr

banana

Heap Allocated Memory

name

origin

volume 12

"Banana Orchard"

growFruit

fruitPtr

eatFruit

origin

volume
apple

23

22

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4, 12, Banana Orchard

