
CIT 5950 Recitation 2

Debugging, Structs and the Heap



Logistics

Check-in00
Due Monday January 23rd @ 10:00 am

Pre Semester Survey
Due Tuesday January 24th @ 11:59 pm 

HW1 (Linked List & Hash Table)
Due Thursday January 26th @ 11:59 pm



Debugging



Debugging Overview

• Debugging is a skill that you will need throughout your career

• gdb (GNU Debugger) is a debugging tool
• Lots of helpful features to help with debugging
• Very useful in tracking undefined behavior

• Valgrind is a memory debugging tool
• Checks for various memory errors
• If you are running into odd behavior, running valgrind may point out the cause.



Segmentation Faults

•Causes of segmentation fault
• Dereferencing uninitialized pointer
• Null pointer
• A previously freed pointer
• Accessing end of an array
• …

•gdb (GNU Debugger) is very helpful for identifying the source of a 
segmentation fault

•backtrace



Other Essential gdb commands

•run <command_line_args>
•backtrace
•frame, up, down
•print <expression>
•quit
•breakpoints

•(see next slide)
gdb reference card w/ 
commands & details on the 
course website.



gdb Breakpoints

• Usage:
• break <function_name>
• break <filename:line#>

• Can advance with:
• continue
• next
• step
• finish



Valgrind & Memory Errors

• Use of uninitialized memory
• Reading/writing memory after it has been freed – Dangling pointers
• Reading/writing to the end of malloc'd blocks
• Reading/writing to inappropriate areas on the stack
• Memory leaks where pointers to malloc'd blocks are lost

Valgrind is your friend!!



Structs and user defined types



Defining Structs

struct fruit_st {
  char* name;
  int price_cents;
};

To define a struct, we use the struct statement.

A struct typically has a name (a tag), and one or more members.

The struct statement defines a new type.



Initialising structs and changing field values

struct fruit_st fruit;
fruit.name = apple;      
fruit.price_cents = 10

● By default the fields of a structure are public

● To change the field names or initialise their values we use the 

dot (.) operator or the arrow operator (->) 

NB:the arrow operator (->) when you have a pointer to a struct



User Defined Types

The C Programming language provides the keyword typedef, 

which defines an alternate name for a type

typedef struct fruit_st {
  char* name;
  int price_cents;
} Fruit;

Fruit fruit;
fruit.name = apple;
...

No need for “struct” in type 
declaration



The Heap



Dynamically Allocated data

Dynamically allocated data is explicitly allocated and de-allocated 

by the program.

Dynamically allocated data persists after a function call



Dynamic vs automatic allocation

// dynamic allocation
int* foo() {
  int* x;
  x = malloc(sizeof(int));
  *x = 595;
  return x;
}

// “Automatic” Allocation
int* foo() {
  int *x;
  int n = 595;
  x = &n;
  return x;
}

x would be pointed to de-allocated memory. 
“n” goes away when we return



User Defined Types (malloc)

Fruit* new_fruit = (Fruit*) malloc(sizeof(Fruit));
new_fruit->name = apple;      
new_fruit->price_cents = 10



Fruits & Orchards
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Pointers and Structs

Orchard o;
o.name = “Angry Orchards”;
Fruit f;
f.origin = &o;
f.volume = 5;



main

bt name

origin

volume
apple

"Apple Orchard\0"

applePtr

33

console output
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int main(int argc, char* argv[]) {
  Orchard bt;
  strcpy(bt.name, "Apple Orchard");

  Fruit apple;
  Fruit* applePtr = &apple;
  apple.origin = &bt;
  apple.volume = 33;
  applePtr->volume = apple.volume;

  printf("1. %d, %s \n",
applePtr->volume,
applePtr->origin->name);

  …

1, 33, Apple Orchard
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… 
apple.volume = eatFruit(apple);
printf("2. %d, %s \n", applePtr->volume,

applePtr->origin->name);

int eatFruit(Fruit fruit) {
  fruit.volume -= 10;
  strcpy(fruit.origin->name,
      "Eaten Fruit Orchard");
  return fruit.volume;
}

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
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…
growFruit(applePtr);
printf("3. %d, %s \n", applePtr->volume,

applePtr->origin->name);

void growFruit(Fruit* fruitPtr) {
  fruitPtr->volume += 7;
}

1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
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1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4, 12, Banana Orchard

void exchangeFruit(Fruit** fruitPtrPtr) {
  Fruit *banana =
      (Fruit*)malloc(sizeof(Fruit));
  banana->volume = 12;
  banana->origin =
      
(OrchardPtr)malloc(sizeof(Orchard));
  strcpy(banana->origin->name,
      "Banana Orchard");
  *fruitPtrPtr = banana;
}

exchangeFruit(&applePtr);
printf("4. %d, %s \n", applePtr->volume,

applePtr->origin->name);
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1, 33, Apple Orchard
2, 23, Eaten Fruit Orchard
3, 30, Eaten Fruit Orchard
4, 12, Banana Orchard


