
CIT 5950 Recitation 4

I/O, POSIX, and System Calls!

1

Logistics

Due Next Thursday:

Homework 1 @ 11:59 pm

2

POSIX
Posix is a family of standards specified by the IEEE. These standards maintains compatibility across
variants of Unix-like operating systems by defining APIs and standards for basic I/O (file, terminal, and
network) and for threading.

1. What does POSIX stand for?

1. Why might a POSIX standard be beneficial? From an application perspective? Versus using the C
stdio library?

Portable Operating System Interface
`

● More explicit control since read and write functions are system calls
and you can directly access system resources.

● POSIX calls are unbuffered so you can implement your own buffer
strategy on top of read()/write().

● There is no standard higher level API for network and other I/O
devices

3

Review from Lecture

ssize_t read(int fd, void *buf, size_t count)

An error occurred result = -1
errno = error

Already at EOF result = 0

Partial Read result < count

Success! result == count

4

5

New Scenario - Messy Roommate

● The Linux kernel now lives with you in room #595

● There are N pieces of trash in the room

● There is a single trash can, char bin[N]
○ (For some reason, the trash goes in a particular order)

● You can tell your roommate to pick it up, but he/she is unreliable

6

New Scenario - Messy Roommate

NumTrash pickup(roomNum, trashBin, Amount)

“I tried to start cleaning, but something came up”
(got hungry, had a midterm, room was locked, etc.)

NumTrash == -1
errno == excuse

“You told me to pick up trash, but the room was
already clean”

NumTrash == 0

“I picked up some of it, but then I got distracted by
my favorite show on Netflix”

NumTrash < Amount

“I did it! I picked up all the trash!” NumTrash == Amount

7

How do we get room 595
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
What do we
do in the
following
scenarios?

8

How do we get room 595
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]I have to study
for CIT 595! I’ll
do it later.

Decide if the
excuse is
reasonable,
and either
let it be or
ask again.

9

How do we get room 595
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]The room is
already clean,
dawg!

Stop asking
them to clean
the room!
There’s
nothing to do.

10

How do we get room 595
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
Ask them
again to pick
up the rest
of it.

I picked up 3
whole pieces of
trash! What more
do you want from
me?

11

How do we get room 595
clean?

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

bin[0]

bin[N-1]
They did
what you
asked, so
stop asking
them to pick
up trash.

I did it! The
whole room
is finally
clean.

12

How do we get room 5950
clean?

int pickedUp = 0;
while (____________) {

}

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

13

How do we get room 5950
clean?

int pickedUp = 0;
while (pickedUp < N) {

 if (NumTrash == -1) {
 if (bad excuse)
 ask again
 stop asking
 }
 if (NumTrash == 0)
 stop asking

}

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

if (NumTrash == -1) {
 if (bad excuse)
 ask again

}
if (NumTrash == 0) // we over-estimated the trash

stop asking since the room is clean
add NumTrash to pickedUp

if (excuse not reasonable)
 ask again
stop asking and handle the excuse

NumTrash = pickup(5950, bin + pickedUp, N - pickedUp)

14

How do we get room 5950
clean?

int pickedUp = 0;
while (pickedUp < N) {

 if (NumTrash == -1) {
 if (bad excuse)
 ask again
 stop asking
 }
 if (NumTrash == 0)
 stop asking

}

NumTrash pickup(roomNum, trashBin, Amount)

NumTrash == -1, errno == excuse

NumTrash == 0

NumTrash < Amount

NumTrash == Amount

if (result == -1) {
 if (bad excuse)
 ask again

}
if (result == 0)

break;
pickedUp += result;

if (errno == E_BUSY_NETFLIX)
 continue;
break;

result = pickup(5950, bin + pickedUp, N - pickedUp)

15

Some Final Notes...
We assumed that there were exactly N pieces of trash (N bytes of data that we
wanted to read from a file). How can we modify our solution if we don’t know N?

 (Answer): Keep trying to read(...) until we get 0 back (EOF / clean room)

We determine N dynamically by tracking the number of bytes read until this point,
and use malloc to allocate more space as we read.

(This case comes up when reading/writing to the network!)

There is no one true loop (or true analogy).
Tailor your POSIX loops to the specifics of what you need!

16

Back to the worksheet (Q3)

17

18

int fd = __; // open 595.txt
int n =;
char *buf = ; // Assume buf initialized with size n
int result;

______________________________; // initialize variable for loop

... // code that populates buf happens here

while (_______________________) {

 result = write(_______,_______________,_______________________);

 if (result == -1) {
 if (errno != EINTR) {
 // a real error happened, return an error result
 ___________________; // cleanup
 perror("Write failed");
 return -1;
 }
 continue; // EINTR happened, so loop around and try again
 }
 ________________________________; // update loop variable
}
________________; // cleanup

Exercise

19

int fd = __; // open 595.txt
int n =;
char *buf = ; // Assume buf initialized with size n
int result;

______________________________; // initialize variable for loop

... // code that populates buf happens here

while (_______________________) {

 result = write(_______,_______________,_______________________);

 if (result == -1) {
 if (errno != EINTR) {
 // a real error happened, return an error result
 ___________________; // cleanup
 perror("Write failed");
 return -1;
 }
 continue; // EINTR happened, so loop around and try again
 }
 ________________________________; // update loop variable
}
________________; // cleanup

open("595.txt", O_WRONLY)

char *ptr = buf

ptr < buf + n

fd ptr buf + n - ptr

close(fd)

ptr += result

close(fd)

**This is one way to solve
this exercise. There exist
other correct solutions

More Posix!

20

4) Why is it important to store the return value from the write() function? Why do we not check for
a return value of 0 like we do for read()?

5) Why is it important to remember to call the close() function once you have finished working on
a file?

More Posix!

21

4) Why is it important to store the return value from the write() function? Why do we not check for
a return value of 0 like we do for read()?

5) Why is it important to remember to call the close() function once you have finished working on
a file?

write() may not actually write all the bytes specified in count.
 Writing adds length to your file, so you don’t need to check for end of file.

In order to free resources i.e. other processes can acquire locks on those files.

HW1 Overview

22

Overview

There are two FileReaders you are implementing as part of the Homework

1. SimpleFileReader

a. A wrapper around posix, supports getting one or more characters from a

file and other minor features

2. BufferedFileReader

a. Like SimpleFileReader, but buffered and has the ability to read tokens

23

Internal Buffer Management

There are four pieces of data relevant to managing the buffer

● static constexpr uint64_t BUF_SIZE = 1024;
○ A constant that represents the size/capacity of the buffer

● char buffer_[BUF_SIZE];
○ The buffer itself, which has size 1024

24

Internal Buffer Management

● int curr_length_;
○ A data member that represents the current length of data in the buffer

○ The buffer is 1024 long, but we may not have 1024 characters to store

○ Consider the file "hi.txt" which has the contents "hello"

■ After initially populating the buffer, curr_length_ should be 5

25

Internal Buffer Management

● int curr_index_;
○ A data member that represents the offset we are into the buffer

○ (which characters in the buffer have been returned to the user, which are

still to be processed.)

○ Consider the file "hi.txt" which has the contents "hello"

■ Curr_index should start at 0

■ After reading 2 characters, curr_index_ should be 2

(so that next time we read, we read the first 'l'

26

Internal Buffer Examples

27

BufferedFileReader bf("hi.txt", " /t/n");
char c = bf.get_char()
c = bf.get_char();
c = bf.get_char();

0 1 2 3 4 … 1023

buffer_ -- -- -- -- -- … --

Red arrow = next line to execute

curr_length_

curr_index_

0

0

Internal Buffer Examples

28

BufferedFileReader bf("hi.txt", " /t/n");
char c = bf.get_char() // returns 'h'
c = bf.get_char();
c = bf.get_char();

0 1 2 3 4 … 1023

buffer_ 'h' 'e' 'l' 'l' 'o’ … --

Red arrow = next line to execute

curr_length_

curr_index_

5

1

Internal Buffer Examples

29

BufferedFileReader bf("hi.txt", " /t/n");
char c = bf.get_char() // returns 'h'
c = bf.get_char(); // returns 'e'
c = bf.get_char();

0 1 2 3 4 … 1023

buffer_ 'h' 'e' 'l' 'l' 'o’ … --

Red arrow = next line to execute

curr_length_

curr_index_

5

2

Internal Buffer Examples

30

BufferedFileReader bf("hi.txt", " /t/n");
char c = bf.get_char() // returns 'h'
c = bf.get_char(); // returns 'e'
c = bf.get_char(); // returns 'l'

0 1 2 3 4 … 1023

buffer_ 'h' 'e' 'l' 'l' 'o’ … --

Red arrow = next line to execute

curr_length_

curr_index_

5

3

Internal Buffer: Other details

● If we reach the end of the buffer, refill the buffer and start at index 0

● If the we can’t refill the buffer due to EOF (end of file), then make sure all

member functions handle the EOF behaviour correctly

○ e.g. get_char() returns EOF, good() returns false …

31

Any questions?

32

