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Scheduling & Virtual Memory
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Logistics 
● HW2 (Threads) due Next Monday, February 27th @ 11:59pm

● Midterm will be released on Wednesday 3/1 at 12pm and will be available until 
Friday 3/3 at 12pm. You have the entire 48 hours to work on the exam

● NO RECITATION NEXT WEEK; NO HOMEWORK OVER SPRING BREAK 
○ Enjoy your well-deserved rest! 



Exercise 1 - 
scheduling
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Quick review of scheduling algorithms
● FCFS (First come first served)

○ Simple to implement 
○ Low throughput, slow response, no priority

● SJF (Shortest Job First)
○ Minimal average turnaround time
○ Need to use estimates, no priority, possible starvation 

● Round Robin
○ Relatively fair
○ Need to choose time quantum correctly, no priority 

● Priority Round Robin
○ Introduce priority
○ Many design choices (# levels, time quantum, priority assignment) 4



Exercise 1 
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Name Arrival Time Running Time

Bert 2 11

Ernie 0 8

Oscar 12 20

Grover 7 15

Elmo 10 4

Consider the following set of 
tasks/processes:

Using the Round Robin 
scheduling algorithm and a time 
quantum/slice of 8, what is the 
finishing time for each?

What is the average waiting 
time?



Exercise 1
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Ernie 
arrives 
and runs

Ernie 
finishes;
Bert runs

Bert 
arrives

Grover 
arrives

Elmo 
arrives

Oscar 
arrives

Bert’s time 
expires; 
Grover runs

Grover’s time 
expires; Elmo 
runs

Elmo finishes; 
Oscar runs

Oscar’s time 
expires; Bert 
runs

Bert finishes; 
Grover runs

Grover 
finishes; 
Oscar starts

Oscar’s time 
expires; 
continues 
running

Oscar 
finishes. 
All done! 

0 2 7 8 10 12 16 2824 36 39 46 54 58

Round robin queue: Ernie -> Bert -> Grover -> Elmo -> Oscar



Exercise 1 
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Name Finishing Time

Bert 39

Ernie 8

Oscar 58

Grover 46

Elmo 28

What is the finishing time for each? What is the average waiting time?

Waiting time = finish – running – arrival 

Bert: 39 – 11 – 2 = 26
Ernie: 8 – 8 – 0 = 0
Oscar: 58 – 20 – 12 = 26
Grover: 46 – 15 – 7 = 24
Elmo: 28 – 4 – 10 = 14

Average = (26 + 0 + 26 + 24 + 14) / 5 = 90 
/ 5 = 18



Review - 
Virtual Memory

8



Memory Overload! 

8 GB RAM!!! 8 GB!!!4 GB!!!

… on my humble laptop with 8GB 
random access memory (RAM)

(warning: don’t do it!)

Suppose I want to run these 
games simultaneously …



Why not physical memory? 

First-pass solution:

Can we store program contents (code + data + heap + stack) 
directly in physical memory (RAM)? 

We can divide up RAM spaces so that each program 
occupies a fixed partition of RAM, preventing accidental 
overwrites 

Problems with this approach? 



Why not physical memory? 
Problems with first-pass solution:

● We would run out of memory and crash!
○ We can’t run any program larger than 8GB (or the partition we 

assign to the program)

● Potential inefficiencies in memory use
○ E.g. program 1 gets 7GB space, but only ends up using 2GB

● Compiler will need to know a program’s partition 
beforehand

● Difficult to keep track of individual segments within a 
partition (e.g. enforcing read-only restriction)



Introducing Virtual Memory

● Virtual memory is not real memory. It is an address 
representation system that we use to make 
memory appear larger than it is 

● We tell each program that it can use all the 
addresses in the “address space” 
○ In a 64-bit machine, address space is 2^64, with addresses 

from 0 to 2^64 - 1

● In behind the scenes, each (used) virtual memory 
address is mapped to a space in the RAM or the disk
○ The Memory Management Unit (MMU) takes care of this



Benefits of virtual memory
● We are no longer bounded by the size of the 

RAM! 
○ Disk space is typically much larger (and comes at a 

cheaper price)

● We do not need to worry about process 
isolation
○ The MMU will take care of that

● More flexibility and efficiency in managing 
memory 
○ The MMU can switch the actual storage location 

without the user/program noticing
○ Less likely to have “gaps” / fragmentation in memory 



Why pages and page table? 
● OK, virtual memory is good. We get it. Why do we 

need this extra thing called pages and page table? 
○ Imagine a mapping of every individual virtual address to 

physical address - the lookup table will be as big as the 
address space (e.g. 2^64)! 

○ Dividing virtual memory addresses into chunks make it 
easier to manage

● A page is a unit of virtual memory (e.g. 4KB)
○ Each page in virtual memory maps to a frame in 

physical storage (RAM + disk) of the same size 
○ The mapping is recorded in the page table
○ Each process has one page table 

Virtual address Valid Physical address

x1A23 0 X2253 (RAM) 

x399A 1 X5001 (Disk)

x7282 0 X3AB2 (RAM)

This table will be very large and 
inefficient!

Keeping track of memory in page 
level is easier 



VM Calculation Cheat Sheet
Address space = 2 ^ (# bits in the address, e.g. 64 for 64-bit machine)

Size of virtual memory = Address space * Addressability (# Bytes in each address)

Number of pages = Size of virtual memory / size of a page 

Size of a page = size of a frame 

Number of frames = Physical Memory (RAM) space / size of a frame 

Number of bits to represent pages or frames = Log_2 (number of pages or frames)

Page number = first N bits of the virtual address, N = number of bits to represent pages or frames

1 KB = 2^10 B                              1 MB = 2^20 B                            1 GB = 2^30 B



Exercise 2
Pages & 
Page tables
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Exercise 2 

Consider a system as follows:
● 32-bit address space
● 16-bit addressable
● 1GB of physical memory
● page sizes of 64kB

a) How many pages are there in virtual 
memory?

b) How many frames are there in 
physical memory?

c) How many bits are there in each 
address’ page number?

d) Consider the virtual address 
xABCDEF01. What is its page number 
in hexadecimal? 



Exercise 2 (a) 

Consider a system as follows:
● 32-bit address space
● 16-bit addressable
● 1GB of physical memory
● page sizes of 64kB

How many pages are there in virtual 
memory?

2^17 or 128k 

32-bit address space -> 2^32 addresses 

16-bit (2-byte) addressable -> each address is 2 
bytes -> 2^33B virtual memory

Each page is 64kB 

2^33B (virtual memory size) / 64kB (page size) = 
2^33 / 2^16 = 2^17 (or 128k)



Exercise 2 (b) 

Consider a system as follows:
● 32-bit address space
● 16-bit addressable
● 1GB of physical memory
● page sizes of 64kB

How many frames are there in 
physical memory?

2^14 or 16k

Frame size = page size

Physical memory is 1GB, so 1GB (total size) / 64kB 
(frame size) = 2^30 / 2^16 = 2^14 (or 16k)



Exercise 2 (c) 

Consider a system as follows:
● 32-bit address space
● 16-bit addressable
● 1GB of physical memory
● page sizes of 64kB

How many bits are there in each 
address’ page number?

17

There are 2^17 pages

To represent N pages we need log_2 N bits

So we need log 2^17 = 17 bits



Exercise 2 (d) 

Consider a system as follows:
● 32-bit address space
● 16-bit addressable
● 1GB of physical memory
● page sizes of 64kB

Consider the virtual address 
xABCDEF01. What is its page number 
in hexadecimal? 

x1579B

In binary, the virtual address is 1010 1011 1100 1101 
1110 1111 0000 0001

There are 2^17 pages so the first 17 bits are the page 
number. 

So the page number is 1010 1011 1100 1101 1.

In hexadecimal, that’s x1579B.



Page Replacement 
Algorithms



Page replacement algorithms 
● The RAM can only hold up to a certain number of pages

○ If the RAM is full, we need to “evict” pages or move them to the disk 
○ How should we decide which pages to evict?

● Goal: optimize (minimize) number of times we need to fetch something 
from the disk (page faults) 
○ FIFO (first in first out): evict the page that first entered physical 

memory
○ LRU (least recently used): evict the page that has not been used for 

the longest time 



Exercise 3
Page Eviction 
algorithms
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Exercise 3
We have a byte-addressable system that has a 16-bit address space, 32kB of physical memory, and page 
sizes of 8kB. Assume the page table is initially empty, and then a process generates the following 
sequence of virtual addresses:

x3311 

x1234 

x1255 

x3456 

xA349 

x7777 

xB222 

x6222 

a) If virtual address x5324 is requested next, which page will be evicted if using a 
First In First Out (FIFO) replacement algorithm? 

b) Instead of using FIFO, which page will be evicted if using a Least Recently Used 
(LRU) replacement algorithm? 

c) Rather than using FIFO or LRU, imagine that the system could look into the 
future and see that the next four virtual address requests (after x5324) would be 
x1A23, x399A, x7282, and x4A32. Knowing this information, which page should 
be evicted when the request for x5324 generates a page fault? 



Exercise 3 (a)
We have a byte-addressable system that has a 16-bit address space, 32kB of physical memory, and page 
sizes of 8kB. Assume the page table is initially empty, and then a process generates the following 
sequence of virtual addresses:

If virtual address x5324 is requested next, which page will be evicted if using a First 
In First Out (FIFO) replacement algorithm? 

001

The page number is the first three bits, because there are eight virtual pages (16-bit address space = 
64k addresses; each holds 1 byte so 64kB total; 8kB per page so 64kB/8kB = 8).

The four virtual addresses above have page numbers 000, 001, 101, and 011, and those take up the 
four frames (there are four frames because there's 32kB physical memory, and 32kB/8kB = 4).

When we get virtual address x5324, the page number is 010, and this causes an eviction.

The one that’s oldest will be evicted, which in this case is the first one to be loaded, which is page 
number 001. 

x3311 0011

x1234 0001

x1255 0001

x3456 0011

xA349 1010

x7777 0111

xB222 1011

x6222 0110



Exercise 3 (b)
We have a byte-addressable system that has a 16-bit address space, 32kB of physical memory, and page 
sizes of 8kB. Assume the page table is initially empty, and then a process generates the following 
sequence of virtual addresses:

Instead of using FIFO, which page will be evicted if using a Least Recently Used (LRU) 
replacement algorithm? 

000

Using LRU, it's page number 000 that has been last used furthest in the past, so it gets 
evicted.

x3311 0011

x1234 0001

x1255 0001

x3456 0011

xA349 1010

x7777 0111

xB222 1011

x6222 0110



Exercise 3 (c)
We have a byte-addressable system that has a 16-bit address space, 32kB of physical memory, and page 
sizes of 8kB. Assume the page table is initially empty, and then a process generates the following 
sequence of virtual addresses:

Rather than using FIFO or LRU, imagine that the system could look into the future and 
see that the next four virtual address requests (after x5324) would be x1A23, x399A, 
x7282, and x4A32. Knowing this information, which page should be evicted when the 
request for x5324 generates a page fault? 

101

As explained above, when x5324 is requested, the page numbers that are in the page table (i.e., that are 
mapped to frames) are 000, 001, 101, and 011, and the page number for address x5324 is 010 (the first 
three bits).

Given the requests indicated above, it would make sense to indicate page number 101 (which contains 
the addresses xA349 and xB222), since it is not used in any of the subsequent requests, whereas all the 
other page numbers are.

x3311 0011

x1234 0001

x1255 0001

x3456 0011

xA349 1010

x7777 0111

xB222 1011

x6222 0110


