
CIT 5950
Recitation 9
HW3, Smart Pointers, and Processes

1

Logistics
● HW3

○ Due Thursday March 30th @ 11:59 PM

2

Homework 3 Overview

3

Overview
In HW3, you will be implementing a simplified version of simplevm

There are three core aspects of the simplevm implementation
● Swap file (provided to you)
● Page
● PageTable

Specification provided in the .h files for Page and PageTable

HIGHLY suggest that you follow the recommended approach in the writeup

4

Swap File
A file containing all of the initial page
contents and the contents of pages
that aren’t loaded in to memory
currently.

Swap files are used by “real” OS’s to
store data that doesn’t fit into physical
memory

(provided for you)

5

Page 0 data

Page 1 data

Page 2 data

…

Page N data

Swap file layout

Start of the file

End of the file

*each page data is fixed size
of 4096 bytes

Page
A page represents a single page of data in virtual memory

A page holds Page::PAGE_SIZE amount of bytes. (4096 bytes)

In the constructor, a page should load in its data from the swap file

On flush() a copy of the page’s data is written to its location on the swap file

The access() and store() member functions modify the bytes_ and not the swap_file

You MUST use an initializer list in the ctor and cctor to initialize the swap_file_
reference. 6

Page Table
Contains an LRU cache of Page’s

Pages are considered “loaded into physical
memory” when there is a Page object for that
page.

Pages that aren’t in memory are stored in the
swap file

get_page() handles both cases where a page
is loaded into memory and where it isn’t

7

Page 0 data

Page 1 data

Page 2 data

…

Page N data

Swap file

Page Table

page0 page2

empty empty

Capacity = 4

LRU Cache Key Properties
- We need to support quick lookup.

- Can I quickly check if a Page is in the PageTable?

- We need to be able to flexibly rearrange Pages and maintain sequential order.
- Can I easily move a Page from the middle of a data structure to the end?
- Can I easily check what the next least used page is?

Alas, no single data structure meets both these requirements.

Think about what combination of data structures could fit these needs.

8

Casting Tips
From the writeup:

- You can assume the type you are reading/writing to the page data will be
primitives types.

This means you can “build up” the bytes that make up an element of type T.
- Read from bytes_ member variable of Page class.

- Where in the bytes array should you start reading from?
- How many bytes should you read?

- Then use static_cast<T> to cast it into the desired type T.

Take a look at reinterpret_cast<T> when reading from the swap file into bytes_.

9

Any Questions?

10

Review Smart Pointers

11

Smart Pointers
● std::unique_ptr

○ Unique owner of the managed raw pointer – disabled cctor and op=
○ Used when you want to declare unique ownership of a pointer

● std::shared_ptr
○ Similar to unique_ptr but can be copied (via cctor or op=),

uses reference counting to decide when to call delete on managed raw
pointer

○ Most commonly used type of smart pointer in practice

● std::weak_ptr
○ Similar to shared_ptr but does not contribute to reference count
○ Almost always used with shared_ptr 12

Smart Pointer Usage
● Main/typical usage:

○ Call ctor with new keyword or existing smart pointer
(e.g., unique_ptr<int[]> uptr(new int[3]))

○ Treat like a normal pointer (i.e., use *, ->, [])

● Other methods that may be useful in some cases:
○ unique_ptr – .get(), .release(), .reset()
○ shared_ptr – .get(), .use_count(), .unique()
○ weak_ptr – .lock(), .use_count(),

 .expired()

unique_ptr<int[]> uptr = unique_ptr<int[]>(new int[3])

Exercise 1

14

Exercise 1 Solution
#include <memory>
using std::shared_ptr;

template <typename T>
struct Node {
 Node(T* val, Node<T>* node): value(val), next(node) {}

 ~Node() { delete value; }

 T* value;
 Node<T>* next;
};

15

Convert the Node struct to be
“smart” by using shared_ptrs.

Exercise 1 Solution
#include <memory>
using std::shared_ptr;

template <typename T>
struct Node {
 Node(T* val, Node<T>* node): value(val), next(node) {}

 ~Node() { delete value; }

 shared_ptr<T> value;
 shared_ptr<Node<T>> next;
};

16

Exercise 1 Solution
#include <memory>
using std::shared_ptr;

template <typename T>
struct Node {
 Node(T* val, Node<T>* node): value(shared_ptr<T>(val)),

next(shared_ptr<Node<T>>(node)) {}

 ~Node() { delete value; }

 shared_ptr<T> value;
 shared_ptr<Node<T>> next;
};

17

Exercise 1 Solution
#include <memory>
using std::shared_ptr;

template <typename T>
struct Node {
 Node(T* val, Node<T>* node): value(shared_ptr<T>(val)),

next(shared_ptr<Node<T>>(node)) {}

 ~Node() { delete value; }

 shared_ptr<T> value;
 shared_ptr<Node<T>> next;
};

18

Exercise 1 Solution
demo
#include <iostream>

using std::cout;
using std::endl;

int main() {
 shared_ptr<Node<int>> head =

shared_ptr<Node<int>>(new Node<int>(new int(351), nullptr));
 head->next = shared_ptr<Node<int>>(new Node<int>(new int(333), nullptr));
 shared_ptr<Node<int>> iter = head;
 while (iter != nullptr) {
 cout << *(iter->value) << endl;
 iter = iter->next;
 }
}

19

head
value

next

value

next

351

333

Ref count: 1

Ref count: 1

Ref count: 1

Ref count: 1

iter

Ref count: 2Ref count: 0 Ref count: 0

Ref count: 0
Ref count: 0Ref count: 2

Processes review

20

Processes
● Created using fork() - the only function that returns twice!

○ Child gets 0
○ Parent gets new pid (process id) of child

● Essentially duplicates the parent process
● Get status of children with waitpid(...)
● Replace currently running process with a new one using exec*()
● Communicate between processes with pipe(int fds[2])

21

Processes and files/pipes
● If we create a pipe or access a file, there is one instance of it system wide

● When a process forks, it copies the file descriptors of the parent

● Multiple process can have access to the same file/pipe, but through their own
file descriptors.

● When one process closes its file descriptors, other processes file descriptors
remain open

22

Exercise 2

23

Exercise: fill in the blanks

24

in_pipe

in_pipe[1]
in_pipe[0]
in_pipe[0]

"./numbers"
"./numbers", nullptr

command.c_str(), args

Exercise: fill in the blanks

25

in_pipe[0]

in_pipe[1]

in_pipe[1]

pid, nullptr, 0

