
CIT 5950
Recitation 10
Intro to Networking & Sockets

1

Logistics
● Recommended due date for HW3: Monday, April 3rd, 11:59PM

● Please start ASAP

2

Networking - At a High Level

3

Computer Networks: A 7-ish Layer Cake

4

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

5

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

LAN

6

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

7

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

UDP TCP Stream abstraction!

8

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local network

bit encoding at signal level

DNSHTTP

9

Data flow

Transmit
Data

Receive
Data

10

Exercise 1

11

Exercise 1

What are the following protocols used for?

● DNS:

● IP:

● TCP:

● UDP:

● HTTP:

12

Bonus: In what layer of the
networking stack are they found?

Exercise 1

● DNS:

● IP:

● TCP:

● UDP:

● HTTP:

Translating between IP addresses and host names. (Application Layer)

Routing packets across the Internet. (Network Layer)

Reliable, stream-based networking on top of IP. (Transport Layer)

 Unreliable, packet-based networking on top of IP. (Transport Layer)

Sending websites and data over the Internet. (Application Layer)

13

Exercise 1

DNS/HTTP

TCP/UDP

IP

14

TCP versus UDP

Transmission Control Protocol(TCP) User Datagram Protocol(UDP)

15

- Connection oriented Service

- Reliable and Ordered

- Flow control

- Connectionless service

- Unreliable packet delivery

- Faster

- No feedback

Client-side Networking

16

Sockets
- Just a file descriptor for network communication
- Types of Sockets

- Stream sockets (TCP)
- Datagram sockets (UDP)

- Each socket is associated with a port number and an IP address
- Both port and address are stored in network byte order (big endian)

17

Sockets

fam port addr zero

fam port flow addr scope

struct sockaddr_in (IPv4)

struct sockaddr_in6 (IPv6)

struct sockaddr_storage

struct sockaddr (pointer to this struct is used as parameter type in system calls)

fam ????

16

28

Big enough to hold either

....

18

fam

Byte Ordering and Endianness
- Network Byte Order (Big Endian)

- The most significant byte is stored in the highest address

- Host byte order
- Might be big or little endian, depending on the hardware

- To convert between orderings, we can use
- uint16_t htons (uint16_t hostlong);
- uint16_t ntohs (uint16_t hostlong);

- uint32_t htonl (uint32_t hostlong);
- uint32_t ntohl (uint32_t hostlong);

19

Networking methods
// Figure out what IP address and port to talk to
// returns 0 on success, negative number on failure
int getaddrinfo(const char *hostname, // hostname to lookup

const char *servname, // service name
const struct addrinfo *hints, // desired output (optional)
struct addrinfo **res); // results structure

// Frees memory allocated by getaddrinfo()
void freeaddrinfo(struct addrinfo *ai);

20

struct addrinfo {
int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can have linked list of records

}

Networking methods

21

- ai_addr points to a struct sockaddr describing a socket address, can be IPv4 or IPv6

Networking methods

22

// Creates a socket
// returns file descriptor on success, -1 on failure (errno set)
int socket(int domain, // AF_INET, AF_INET6, etc.

int type, // SOCK_STREAM, SOCK_DGRAM, etc.
int protocol); // usually 0

// Connects to the server
// returns 0 on success, -1 on failure (errno set)
int connect(int sockfd, // socket file descriptor

 struct sockaddr *serv_addr, // socket addr of server
 socklen_t addrlen); // size of serv_addr

Networking methods

23

// returns amount read, 0 for EOF, -1 on failure (errno set)
ssize_t read(int fd, void *buf, size_t count);

// returns amount written, -1 on failure (errno set)
ssize_t write(int fd, void *buf, size_t count);

// returns 0 for success, -1 on failure (errno set)
int close(int fd);

- Same POSIX methods we used for file I/O!
(so they require the same error checking...)

Exercise 2

24

25

This diagram depicts the basic
skeleton of a C++ program for
client-side networking, with
arrows representing the flow of
data between them.

Fill in the names of the
functions being called, and the
arguments being passed.

Then, for each arrow in the
diagram, fill in the type and/or
data that it represents.

Outputs of
functions

Inputs of
functions

1.

26

1. getaddrinfo()
- Performs a DNS Lookup for a hostname

int getaddrinfo(const char *hostname,
 const char *service,

 const struct addrinfo *hints,
 struct addrinfo **res);

27

1. getaddrinfo()
- Performs a DNS Lookup for a hostname

- Use “hints” to specify constraints (struct addrinfo *)

- Get back a linked list of struct addrinfo results

int getaddrinfo(const char *hostname,
 const char *service,

 const struct addrinfo *hints,
 struct addrinfo **res);

28

1. getaddrinfo() - Interpreting Results
struct addrinfo {

int ai_flags; // additional flags
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

};

- ai_addr points to a struct sockaddr describing the socket address

29

1. getaddrinfo() - Interpreting Results
With a struct sockaddr*:

- The field sa_family describes if it is IPv4 or IPv6

- Cast to struct sockaddr_in* (v4)or struct sockaddr_in6* (v6)

to access/modify specific fields

- Store results in a struct sockaddr_storage to have a space big enough for

either

30

1. getaddrinfo() - Interpreting Results

fam port addr zero

fam port flow addr scope

struct sockaddr_in (IPv4)

struct sockaddr_in6 (IPv6)

struct sockaddr_storage

struct sockaddr (pointer to this struct is used as parameter type in system calls)

fam ????

16

28

Big enough to hold either

....

31

fam

2.

32

2. socket()
- Creates a “raw” socket, ready to be bound

- Returns file descriptor (sockfd) on success, -1 on failure

int socket(int domain, // AF_INET, AF_INET6
 int type, // SOCK_STREAM (TCP)
 int protocol); // 0

33

3.

34

3. connect()
- Connects an available socket to a specified address

- Returns 0 on success, -1 on failure

int connect (int sockfd, // from 2
 const struct sockaddr *serv_addr, // from 1
 socklen_t addrlen) ; // size of serv_addr

35

3. connect()
- Connects an available socket to a specified address

- Returns 0 on success, -1 on failure

int connect (int sockfd, // from 2
 const struct sockaddr *serv_addr, // from 1
 socklen_t addrlen) ; // size of serv_addr

Cast sockaddr_storage* to sockaddr* !

36

4. read/write and 5. close
- Thanks to the file descriptor abstraction, use as normal!
- read from and write to a buffer, the OS will take care of

sending/receiving data across the network
- Make sure to close the fd afterward

37

38

