
CIT 5950
Recitation 11
Boooooooooost, HTTP & Project Overview

1

Logistics
● Project spec released

○ Due: April 26th @ 11:59 pm
○ Introduced in lecture

● We will provide an overview of the project & boost tips in this lecture

2

Project Overview

3

Web Server
● Parse files to for the search engine

○ Crawling a file tree and building up a word index

● Establish client connections
○ Server socket set up

● Read client requests
○ Parse HTTP requests

● Respond to requests
○ Write HTTP responses

● Fix security vulnerabilities
○ Escape characters

4

These last three steps involve a lot of
string manipulation which can be

tedious!

The Cure: BOOST

BOOOOOOOOST

5

BOOST
Boost is a free C++ library that provides support for various tasks in C++
● Note: Boost does NOT follow the Google style guide!!!

Boost adds many string algorithms that you may have seen in Java
● Include with #include <boost/algorithm/string.hpp>

We are showcasing a few we think could be useful for HW4, but more can be found here:
● https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

6

https://www.boost.org/doc/libs/1_60_0/doc/html/string_algo.html

trim
void boost::trim(string& input);
● Removes all leading and trailing whitespace from the string
● input is an input and output parameter (non-const reference)

string s(" HI ");
boost::algorithm::trim(s);

// results in s == "HI"

7

replace_all
void boost::replace_all(string& input, const string& search,

const string& format);

● Replaces all instances of search inside input with format

string s("ynrnrt");
boost::algorithm::replace_all(s, "nr", "e");

// results in s == "yeet"

8

replace_all
void boost::replace_all(string& input, const string& search,

const string& format);

● Replaces all instances of search inside input with format

string s("queue?");
boost::algorithm::replace_all(s, "que", "q");

replace_all() guarantees that
‘format’ will be in the final result
if-and-only-if ‘search’ existed.

replace_all() makes a single
pass over input.

// results in s == "que?"

9

split
void boost::split(vector<string>& output,

 const string& input,
 boost::PredicateT match_on,
 boost::token_compress_mode_type compress);

● Split the string by the characters in match_on

boost::PredicateT boost::is_any_of(const string& tokens);
● Returns predicate that matches on any of the characters in tokens

10

split Examples
vector<string> tokens;

string s("I-am--split");

boost::split(tokens, s, boost::is_any_of("-"),
 boost::token_compress_on);
// results in tokens == ["I", "am", "split"]

boost::split(tokens, s, boost::is_any_of("-"),
 boost::token_compress_off);
// results in tokens == ["I", "am", "", “split"]

11

Exercise 1

12

vector<string> RemoveDuplicates(const string& input){

}

 string copy(input);
 boost::algorithm::trim(copy);
 std::vector<string> components;
 boost::split(components, copy, boost::is_any_of(" \t\n"),

 boost::token_compress_on);
 std::vector<string> result;
 for (uint i = 0; i < components.size(); ++i) {
 bool unique = true;
 for (uint j = 0; j < i && unique; ++j) {
 unique &= !(components[i] == components[j]);
 }
 if (unique) {
 result.push_back(components[i]);
 }
 }
 return result;

13

HTTP Review

14

HTTP Review
1. What does HTTP stand for?

1. What layer does HTTP reside in?

HyperText Transfer Protocol

Application Layer

15

HTTP Request Format
[METHOD] [request-uri] HTTP/[version]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[request body, if any]

16

HTTP Methods
GET The GET method requests a representation of the specified resource. Requests using GET should only

retrieve data.

HEAD The HEAD method asks for a response identical to that of a GET request, but without the response body.

POST The POST method is used to submit an entity to the specified resource, often causing a change in state or
side effects on the server.

PUT The PUT method replaces all current representations of the target resource with the request payload.

DELETE The DELETE method deletes the specified resource.

CONNECT The CONNECT method establishes a tunnel to the server identified by the target resource.

OPTIONS The OPTIONS method is used to describe the communication options for the target resource.

TRACE The TRACE method performs a message loop-back test along the path to the target resource.

PATCH The PATCH method is used to apply partial modifications to a resource.
17

HTTP Response Format
HTTP/[version] [status code] [reason]\r\n

[headerfield1]: [fieldvalue1]\r\n

[headerfield2]: [fieldvalue2]\r\n

[...]

[headerfieldN]: [fieldvalueN]\r\n

\r\n

[response body, if any]

18

HTTP Response Status Codes
● HTTP/1.1 200 OK

○ The request succeeded and the requested object is sent

● HTTP/1.1 404 Not Found
○ The requested object was not found

● HTTP/1.1 301 Moved Permanently
○ The object exists, but its name has changed
○ The new URL is given as the “Location:” header value

● HTTP/1.1 500 Server Error
○ The server had some kind of unexpected error

19

Version

Status

Headers

Request body

20

Writing an HTTP Request
● Example HTTP Request layout can be found in HttpRequest.h

● Example file request:
○ GET /static/test_tree/books/artofwar.txt HTTP/1.1

● Example query request:
○ GET /query?terms=books+of+war HTTP/1.1

● Compare the html output of ./solution_binaries/httpd to your
./httpd

21

Exercise 2

22

Exercise 2
map<string,string> ExtractRequestLine(const string& request) {
 vector<string> lines;
 boost::split(lines, request, boost::is_any_of("\r\n"),
 boost::token_compress_on);
 vector<string> components;
 string firstLine = lines[0];
 boost::split(components, firstLine, boost::is_any_of(" "),
 boost::token_compress_on);
 map<string, string> res;
 res["method"] = components[0];
 res["uri"] = components[1];
 res["version"] = components[2];
 return res;
}

23

