
CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Review
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin 

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Logistics

❖ Project released

▪ Due May 1st at midnight, please get started if you haven’t already

▪ Autograder posted now

▪ NOTE: part of it is manually checked, not auto-graded

❖ HW4

▪ Due last Friday

▪ Autograder posted

❖ Last “Checkin” posted

▪ Due May1st at midnight (late deadline over reading days)

▪ (Post Semester Survey)

2



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Today’s Lecture

❖ Today’s lecture is going to be bleh

▪ I have some review materials prepared

▪ There is other shit happening on campus

▪ I know you all have projects and homework to wrap-up

❖ Poll:

▪ Make this lecture Office Hours?

▪ Next lecture (Wednesday) can still be review, and I am intending 
to have an exam review session during finals period.

3



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

❖ Any questions? (On anything)

▪ This is the chance for catchup questions, same at the beginning of 
next lecture.

4

pollev.com/tqm



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Exam Philosophy / Advice (pt. 1)

❖ I do not like exams that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of 
some things. (for example: I will list some of the functions that 
may be useful and a brief summary of what the function does)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices 

5



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Exam Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must 
remember some things

▪ High level concepts or fundamentals. I do not expect you to 
remember every minute detail.

• E.g. how a multi level page table works should be know, but not the 
exact details of what is in each page table entry

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll 
everywhere questions)

6



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Exam Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop 
and think about the questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep 
breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part 
even if you haven’t finished the current part

7



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Exam Philosophy / Advice (pt. 4)

❖ On the exam you will have to explain things

❖ Your explanations should be more than just stating a topic 
name.

❖ Don't just say something like (for example) "because of 
threads" or just state some facts like "threads are parallel 
and lightweight processes". 

❖ State how the topic(s) relate to the exam problem and 
answer the question being asked. 

8



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Review Topics

❖ Scheduling

❖ Threads 

❖ IPC

❖ Networks (P1, P2, P3)

❖ Smart Pointers

❖ C++ Copying 

9

NOTE: These are not all the 
topics that could be on the final. 
List is trimmed for review due to 
time constraints.

Will probably have a few more 
questions next lecture



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Scheduling

❖ The following processes are scheduled using a standard 
Priority Round Robin scheme.

▪ You may assume the following:

• the quantum for all processes
(regardless of priority) is 2

• context switching is instantaneous

• if a process arrives and its priority is higher than that of the process 
that is currently running, the newly-arrived process is immediately 
scheduled; in that case, the process that is preempted goes to the end 
of its queue, but is able to run for a full quantum the next time it is 
scheduled

• if a process' time slice ends at the same time as another process of 
the same priority arrives, the one that just arrived goes into the 
queue before the one that just finished its time slice

10

In What order do the processes finish?



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Scheduling

❖ The following processes are scheduled using a standard 
Priority Round Robin scheme.

▪ You may assume the following:

• the quantum for all processes
(regardless of priority) is 2

• context switching is instantaneous

• if a process arrives and its priority is higher than that of the process 
that is currently running, the newly-arrived process is immediately 
scheduled; in that case, the process that is preempted goes to the end 
of its queue, but is able to run for a full quantum the next time it is 
scheduled

• if a process' time slice ends at the same time as another process of 
the same priority arrives, the one that just arrived goes into the 
queue before the one that just finished its time slice

11

In What order do the processes finish?

EBACDF



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Threads & Locks

❖ Consider we are working with a data base that has N 
numbered blocks. Multiple threads can access the data 
base and before they perform an operation, the thread 
first acquires the lock for the blocks it needs.

▪ Example: Thread1 accesses B3, B5 and B1. Thread2 may want to 
access B3, B9, B6. Here is some example pseudo code:

12

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Threads & Locks

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to 
acquire the same lock twice

▪ Someone proposes we fix this by locking the whole database 
instead of locking at the block level. What downsides does this 
have? Does it even avoid deadlocks?

▪ How can we fix this
(without locking
the whole database
if that even works)?

13

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Threads & Locks

▪ This code has the possibility to deadlock. Give an
example of this happening. You can assume no thread tries to 
acquire the same lock twice

• Thread 1 wants B2 and B4. Thread 2 also wants B2 and B4, but lists 
them in a different order. Thread 1 gets B2, Thread 2 get B4, and we 
deadlock.

14

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Threads & Locks

▪ Someone proposes we fix this by locking the whole database 
instead of locking at the block level. What downsides does this 
have? Does it even avoid deadlocks?

• This works, but now our data base is run entirely sequentially for 
these transactions even if two thread have completely separate 
blocks they operate on, they cannot run in parallel.

15

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Threads & Locks

▪ How can we fix this (without locking the whole database
if that even works)? 

▪ Have each thread acquire the locks in a strict increasing 
numerical order. This prevents any cycles from happening

16

void transaction(list<int> block_numbers) {

  for (every block_num in block_numbers) {

    acquire_lock(block_num)

  }

  operation(block_numbers);

  for (every block_num in block_numbers) {

    release_lock(block_num);

  }

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

IPC

❖ The following code intends to 
use a global variable so that a 
child process reads a string 
and the parent prints it.

❖ Briefly describe two reasons 
why this program won’t work. 
You can assume it compiles.

17

string message;

void child();

void parent();

int main() {  

  pid_t pid = fork();

  if (pid == 0) {

    child();

  } else {

    parent();

  }

}

void child() {

  cin >> message;

}

void parent() {

  cout << message;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

IPC

❖ The following code intends to 
use a global variable so that a 
child process reads a string 
and the parent prints it.

❖ Briefly describe two reasons 
why this program won’t work. 
You can assume it compiles.
▪ After fork is called, global 

variables are no longer shared. 
Each process has its own 
“message”

▪ There is no synchronization to 
know if the parent prints after the 
child reads. 18

string message;

void child();

void parent();

int main() {  

  pid_t pid = fork();

  if (pid == 0) {

    child();

  } else {

    parent();

  }

}

void child() {

  cin >> message;

}

void parent() {

  cout << message;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

IPC

❖ Describe how we would have 
to rewrite the code if we 
wanted it to work. Keeping the 
multiple processes and calls to 
fork(). Be specific about where 
you would add the new lines 
of code.

19

string message;

void child();

void parent();

int main() {  

  pid_t pid = fork();

  if (pid == 0) {

    child();

  } else {

    parent();

  }

}

void child() {

  cin >> message;

}

void parent() {

  cout << message;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

IPC

❖ Describe how we would 
have to rewrite the code 
if we wanted it to work. 
Keeping the multiple 
processes and calls to 
fork(). Be specific about 
where you would add the 
new lines of code.

❖ ONE ANSWER:

20

string message;

int fds[2];

void child();

void parent();

int main() {

  pipe(fds);  

  pid_t pid = fork();

  if (pid == 0) {

    close(fds[0]);

    child();

  } else {

    close(fds[1]);

    parent();

  }

}

void child() {

  cin >> message;

  wrapped_write(fds[1], message);

}

void parent() {

  wrapped_read(fds[0], message);

  cout << message;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Networking: pt. 1

❖ TCP guarantees reliable delivery of the packets that make up a stream, 

assuming that the socket doesn’t fail because of an I/O error. 

❖ IP guarantees reliable delivery of packets, assuming that the socket doesn’t 

fail because of an I/O error. 

❖ Given a particular hostname (like www.amazon.com), getaddrinfo() will return 

a single IP address corresponding to that name.

❖ A single server machine can handle connection requests sent to multiple IP 

addresses.

❖ A struct sockaddr_in6 contains only an ipv6 address.

❖ The HTTP payload takes up a larger percentage of the overall packet sent 

over the network than the IP payload.

21



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Networking: pt. 1

❖ TCP guarantees reliable delivery of the packets that make up a stream, 

assuming that the socket doesn’t fail because of an I/O error. 
▪ True

❖ IP guarantees reliable delivery of packets, assuming that the socket doesn’t 

fail because of an I/O error. 
▪ False

❖ Given a particular hostname (like www.amazon.com), getaddrinfo() will return 

a single IP address corresponding to that name.
▪ False

❖ A single server machine can handle connection requests sent to multiple IP 

addresses.
▪ True

❖ A struct sockaddr_in6 contains only an ipv6 address.
▪ False

❖ The HTTP payload takes up a larger percentage of the overall packet sent 

over the network than the IP payload.
▪ False

22



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Networking pt. 2

❖ For each of the following behaviors, identify what 
networking layer is most closely thought of as being 
responsible for handling that behavior.

▪ Host A tries to send a long message to Host B in another city, 
broken up into many packets. A packet in the middle does not 
arrive, so Host A sends it again.

▪ Host A tries to send a message to Host B, but Host C and Host D 
are also trying to communicate on the same network, so Host A 
must avoid interfering

23



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Networking pt. 2

❖ For each of the following behaviors, identify what 
networking layer is most closely thought of as being 
responsible for handling that behavior.

▪ Host A tries to send a long message to Host B in another city, 
broken up into many packets. A packet in the middle does not 
arrive, so Host A sends it again.

• Transport Layer (Protocol commonly associated with this: TCP)

▪ Host A tries to send a message to Host B, but Host C and Host D 
are also trying to communicate on the same network, so Host A 
must avoid interfering

• Data Link Layer (Protocol commonly associated with this: MAC)

24



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Networking pt. 3

❖ The original versions of HTTP (including 1.1) were 
designed to use plain text characters sent over the 
network instead of alternatives like a binary encoding for 
the request and response. Describe one advantage of this 
design decision and one disadvantage.

❖ Advantage:

❖ Disadvantage: 

25



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Networking pt. 3

❖ The original versions of HTTP (including 1.1) were 
designed to use plain text characters sent over the 
network instead of alternatives like a binary encoding for 
the request and response. Describe one advantage of this 
design decision and one disadvantage.

❖ Advantage:

▪ Interpretable by humans

▪ Easy to experiment with and adopt

❖ Disadvantage: 

▪ Might be less efficient (for some definition of efficient) than a 
well-packed binary format

26



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Smart Pointers

❖ Suppose we have the following declarations at the beginning of a C++ 

program:

❖ For each part, indicate whether if we were to add just that line(s) after the 

code above, whether there is a compiler error, some sort of run time error, or 

memory leak. 

▪ unique_ptr a(n);

▪ unique_ptr b(x);

▪ unique_ptr c(y);

▪ unique_ptr d(&n);

▪ unique_ptr e(new int(333));

▪ unique_ptr temp(new int(0)); 

unique_ptr f(temp.get());

27

int n = 17; 

int *x = &n; 

int *y = new int(42); 



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

Smart Pointers

❖ Suppose we have the following declarations at the beginning of a C++ 

program:

❖ For each part, indicate whether if we were to add just that line(s) after the 

code above, whether there is a compiler error, some sort of run time error, or 

memory leak. 

▪ unique_ptr a(n); Won’t compile.

▪ unique_ptr b(x); Compiles, but fails during execution

▪ unique_ptr c(y); Works

▪ unique_ptr d(&n); Compiles, but fails during execution

▪ unique_ptr e(new int(333)); Works, but y leaks

▪ unique_ptr temp(new int(0)); Compiles, 

unique_ptr f(temp.get()); but fails during execution

28

int n = 17; 

int *x = &n; 

int *y = new int(42); 



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the 

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

29

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const; 

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A'}; 

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

  cout << Score(myAns) << endl;

return 0;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the 

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

30

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const; 

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

  cout << Score(myAns) << endl;

return 0;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the 

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

31

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const; 

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];  // defulat ctor x2

myAns[0] = MC('B');

myAns[1] = MC('A');

cout << "Score: ";

  cout << Score(myAns) << endl;

return 0;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the 

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

32

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const; 

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];  // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

  cout << Score(myAns) << endl;

return 0;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the 

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

33

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const; 

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

}

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];  // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

  cout << Score(myAns) << endl;

return 0;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the 

following invoked:

▪ MC constructor

▪ MC copy constructor

▪ MC operator=

▪ MC destructor

34

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const; 

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];  // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

  cout << Score(myAns) << endl;

return 0;

}



CIT 5950, Spring 2024L25: ReviewUniversity of Pennsylvania

C++ Copying

❖ Below is a class that represents a Multiple Choice answer

❖ How many times are each of the 

following invoked:

▪ MC constructor           6

▪ MC copy constructor  2

▪ MC operator=             2

▪ MC destructor            8

35

class MC {

public:

MC() : resp_(' ') { }

MC(char resp) : resp_(resp) { }

char get_resp() const { return resp_; }

bool Compare(MC mc) const; 

private:

char resp_;

}; // class MC

int QS 2

// this works

MC key[2] = {'D', 'A’}; // ctor x2

size_t Score(const MC *ans) {

size_t score = 0;

for (int i = 0; i < QS; i++) {

if (ans->Compare(key[i])) {

score++;

} // cctor in loop 2x for param

ans++;

}

return score;

}

int main(int argc, char **argv) {

MC myAns[QS];  // defulat ctor x2

myAns[0] = MC('B’); // ctor then =

myAns[1] = MC('A’); // ctor then =

cout << "Score: ";

  cout << Score(myAns) << endl;

return 0;

}


	Default Section
	Slide 1: Review Computer Systems Programming, Spring 2024
	Slide 2: Logistics
	Slide 3: Today’s Lecture
	Slide 4
	Slide 5: Exam Philosophy / Advice (pt. 1)
	Slide 6: Exam Philosophy / Advice (pt. 2)
	Slide 7: Exam Philosophy / Advice (pt. 3)
	Slide 8: Exam Philosophy / Advice (pt. 4)
	Slide 9: Review Topics
	Slide 10: Scheduling
	Slide 11: Scheduling
	Slide 12: Threads & Locks
	Slide 13: Threads & Locks
	Slide 14: Threads & Locks
	Slide 15: Threads & Locks
	Slide 16: Threads & Locks
	Slide 17: IPC
	Slide 18: IPC
	Slide 19: IPC
	Slide 20: IPC
	Slide 21: Networking: pt. 1
	Slide 22: Networking: pt. 1
	Slide 23: Networking pt. 2
	Slide 24: Networking pt. 2
	Slide 25: Networking pt. 3
	Slide 26: Networking pt. 3
	Slide 27: Smart Pointers
	Slide 28: Smart Pointers
	Slide 29: C++ Copying
	Slide 30: C++ Copying
	Slide 31: C++ Copying
	Slide 32: C++ Copying
	Slide 33: C++ Copying
	Slide 34: C++ Copying
	Slide 35: C++ Copying


