
CIT5950 – Section 3: C++ Intro (Const, ref, memory & objects)

Const & References

Exercise 1: Reference & const practice
a) Draw a memory diagram for the variables declared in main.

void foo(const int &arg);
void bar(int &arg);

int main(int argc, char **argv)
{

int x = 5;
int &refx = x;
int *ptrx = &x;
const int &ro_refx = x;
const int *ro_ptr1 = &x;
int *const ro_ptr2 = &x;
// ...

}

b) When would you prefer void func(int &arg); to void func(int *arg);?
Expand on this distinction for other types besides int.

- When you don’t want to deal with pointer semantics, use references
- When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters and/or

return values), use references
- Style wise, we want to use references for input parameters and pointers for output

parameters, with the output parameters declared last

c) What does the compiler think about the following lines of code:

bar(refx);
bar(ro_refx);
foo(refx);

// No issues
// Compiler error - ro_refx is const
// No issues

d) How about this code?
ro_ptr1 = (int*) 0xDEADBEEF;
ptrx = &ro_refx;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

// No issues
// Compiler error - ro_refx is const
// Compiler error - ro_ptr2 is const
// Compiler error - (*ro_ptr1) is const

e) In a function const int f(const int a); are the const declarations useful to
the client? How about the programmer? What about this function needs to change to
make const matter?

1

The const return and parameter both don’t affect the client at all, since they work with
copies of the parameter/return value. This enforces the programmer not to modify a at all. If f
used references for the parameter/return, then it would matter to both the client and the
programmer.

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think of
these like malloc() and free() with some key differences:

● Unlike malloc() and free(), new and delete are operators, not functions.
● The implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type. Syntax for
arrays is “new type[num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For anything
you called “new” on, you should at some point call “delete” to clean it up. Syntax for arrays is
“delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 2: Leaky Pointer
#include <cstdlib>

class Leaky {
public:
Leaky() { x_ = new int(5); }
~Leaky() { delete x_; } // Delete the allocated int

private:
int* x_;

};

int main(int argc, char **argv) {
Leaky **lkyptr = new Leaky *;
Leaky *lky = new Leaky();
*lkyptr = lky;
delete lkyptr;
delete lky; // Delete of lkyptr doesn’t delete what lky points to
return EXIT_SUCCESS;

}

Assuming an instance of Leaky takes up 8 bytes (like a C-struct with just int* x_), how many bytes
of memory are leaked by this program? How would you fix the memory leaks?
Leaks 12 bytes of memory: 8 bytes for the allocated Leaky object lky points to + 4 bytes for the int
the Leaky instance allocates in its constructor.
Deleting the lkyptr doesn’t automatically delete what the pointer points to. Have to also delete lky
and then create a destructor that deletes the allocated int pointer x_.

2

Exercise 3: Heapy Point

Write the class definition (.h file) and class member definition (.cc file) for a class
HeapyPoint that fulfills the following specifications:

Fields
● A HeapyPoint should have three floating-point coordinates that are all stored on

the heap

Constructors and destructor
● A constructor that takes in three double arguments and initialize a HeapyPoint with

the arguments as its coordinates
● A constructor that takes in two HeapyPoints and initialize a HeapyPoint that is the

midpoint of the input points
● A destructor that frees all memory stored on the heap

Methods
● A method set_coordinates() that set the HeapyPoint’s coordinates to the three given

coordinates
● A method dist_from_origin() that returns a HeapyPoint’s distance from the origin

(0,0,0)
● A method print_point() that prints out the three coordinates of a HeapyPoint

Class definition (in .h file):

Class HeapyPoint {
public:

HeapyPoint(double x, double y, double z);
HeapyPoint(HeapyPoint& p1, HeapyPoint& p2); // note the use of reference
~HeapyPoint();
void set_coordinates(double x, double y, double z);
double dist_from_origin();
void print_point();

private:
double * x_ptr;
double * y_ptr;
double * z_ptr; // pointers to coordinates on the heap

};

Class member definition (in .cc file):

#include <cmath>
#include "HeapyPoint.h"
#include <iostream>

3

// basic constructor - three int arguments
HeapyPoint::HeapyPoint(double x, double y, double z) {

x_ptr = new double(x);
y_ptr = new double(y);
z_ptr = new double(z);

}

// midpoint constructor
HeapyPoint::HeapyPoint(HeapyPoint& p1, HeapyPoint& p2) { // note the use of reference

x_ptr = new double ((*p1.x_ptr + *p2.x_ptr) / 2.0);
y_ptr = new double ((*p1.y_ptr + *p2.y_ptr) / 2.0);
z_ptr = new double ((*p1.z_ptr + *p2.z_ptr) / 2.0);

}

// destructor
HeapyPoint::~HeapyPoint() {

delete x_ptr;
delete y_ptr;
delete z_ptr;

}

void HeapyPoint::set_coordinates(double x, double y, double z) {
*x_ptr = x;
*y_ptr = y;
*z_ptr = z;

}

double HeapyPoint::dist_from_origin() {
double ret = 0.0;
ret += sqrt(pow(*x_ptr, 2) + pow(*y_ptr, 2) + pow(*z_ptr, 2));
return ret;

}

void HeapyPoint::print_point() {
std::cout << "Point: " << *x_ptr << ", " << *y_ptr << ", " << *z_ptr << std::endl;

}

4

