
CIT 5950 Recitation 3 - Processes and Threads
Welcome back to recitation! We’re glad that you’re here :)

Process and Threads
● A process has a virtual address space. Each process is started with a single thread but can

create additional threads.
● A thread contains a sequential execution of a program and is contained within a process.
● Threads of the same process share a memory/address space: use the same heap, globals,

and code but each thread has its own stack.

POSIX threads (pthreads) API
● Part of the standard C/C++ libraries and declared in pthread.h.
● Must compile and link with -pthread.

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

➔ thread: Output parameter for thread identifier
➔ attr: Used to set thread attributes. Use NULL/nullptr for defaults.
➔ start_routine: Pointer to a function that the thread will execute upon creation.
➔ arg: A single argument that may be passed to start_routine. NULL/nullptr may be

used if no argument is to be passed.
★ Creates a new thread and calls start_routine(arg).
★ Returns 0 if successful and an error number otherwise.

int pthread_join(pthread_t thread, void **retval);
★ Called by parent thread to wait for the termination of the thread specified by thread. If retval

is non-NULL, then retval acts an output parameter and the address passed to
pthread_exit by the finished thread is stored in it.

★ Returns 0 if successful and an error number otherwise.

void pthread_exit(void *retval);
★ Terminates the calling thread with an optional termination status parameter, retval, which can

just be set to NULL/nullptr.

POSIX mutual exclusion (mutex) API
● Restrict access to sections of code in order to protect shared data from being simultaneously

accessed by multiple threads.

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

★ Initializes the mutex referenced by mutex with attributes specified by attr (use
NULL/nullptr for default attributes).

int pthread_mutex_destroy(pthread_mutex_t *mutex);
★ Destroys (i.e. uninitializes) the mutex object referenced by mutex.

int pthread_mutex_lock(pthread_mutex_t *mutex);
★ Attempts to acquire the mutex object referenced by mutex and blocks if it’s currently held by

another thread. Should be placed at the start of your critical section of code.

int pthread_mutex_unlock(pthread_mutex_t *mutex);
★ Releases the mutex object referenced by mutex. Should be placed at the end of your critical

section of code.

Exercise 1
Imagine we have:

MyClass onTheStack;
pthread_t child;
pthread_create(&child, nullptr, foo, &onTheStack);

onTheStack is on the parent thread’s stack. However, each thread has its own stack!
Can we still access onTheStack from the child? Why or why not?

a) List some reasons why it's better to use multiple threads within the same process rather than
multiple processes running the same program.

b) What benefits could there be to using multiple processes instead of multiple threads?

c) Which registers will for sure be different between two threads that are executing different
functions?

d) How does the OS distinguish the threads?

Exercise 2
Consider the following multithreaded C program:

int g = 0;
void *worker(void *ignore) {
for (int k = 1; k <= 3; k++) {
g = g + k;

}
printf("g = %d\n", g);
return NULL;

}

int main() {
pthread_t t1, t2;
int ignore;
ignore = pthread_create(&t1, NULL, &worker, NULL);
ignore = pthread_create(&t2, NULL, &worker, NULL);
pthread_join(t1, NULL);
pthread_join(t2, NULL);
return EXIT_SUCCESS;

}

a) Give three different possible outputs (there are many)

b) What are the possible final values of the global variable ‘g’? (circle all possible)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+

