
CIT 5950 Recitation 10 - Pipe() and HW4

Welcome back to recitation! We’re glad that you’re here :)

Exercise 1
int main(int argc, char* argv[]) {

int fd = open("antennas.txt", O_RDWR);
pid_t pid = fork();
close(STDOUT_FILENO);
if (pid == 0) {

cout << "storm\n";
dup2(fd, STDOUT_FILENO); //redirects STDOUT to the file

specified by fd
cout << "static\n";
exit(EXIT_SUCCESS);

}
waitpid(pid, nullptr, 0);
cout << "sleep\n";

}

What is printed to the terminal and what is written to antennas.txt?

antennas.txt contains:
static

what was printed:

Nothing gets printed to the terminal since STDOUT_FILENO has been closed for both
parent and child

Note:
Write function will fail if STDOUT_FILENO is closed. But cout<< has the buffer and
might not be flushed yet, thus the behavior is undefined.

For dup2(newfd, oldfd)
● newfdmust be a valid, open file descriptor.
● oldfd does not need to be open; if it is, dup2 will close it without complaining. If

it's not already open, dup2 will just assign it the file descriptor newfd.
Using dup2 to copy a new file descriptor onto STDOUT_FILENO after it's been closed
won’t throw an error. The new file descriptor will take over the standard output stream.

1

Exercise 2: fill in the blanks
int main (int argc, char** argv) {

// create a pipe to send input to program

int in_pipe[2];

pipe(in_pipe);

pid_t pid = fork();

if (pid == 0) {

// child

close(in_pipe[1]); // close writeend

dup2(in_pipe[0], STDIN_FILENO); // replace stdin with read end of pipe

close(in_pipe[0]); // close read end since it has been duplicated

// exec the program "./numbers" with no command line args

string command("./numbers");

char* args[] = {"./numbers", nullptr};

execvp(command.c_str(), args);

// should NEVER get here

return EXIT_FAILURE;

} else {

close(in_pipe[0]); // close read end

// write inputs to the pipe

string inputs = "30\n40\n50\n6";

wrapped_write(to_echo, in_pipe[1]);

// close pipe so that exec'd

// program knows there is no more piped contents to read

close(in_pipe[1]);

// wait for child to finish

waitpid(pid, nullptr, 0);

}

}

2

Exercise 3 What does this print? Does it terminate?
int main(int argc, char* argv[]) {

array<int, 2> pipe_fds {-1, -1};
pipe(pipe_fds.data());
pid_t pid = fork();
if (pid == 0) {

dup2(pipe_fds.at(0), STDIN_FILENO);
close(pipe_fds.at(0));
// cat should read from stdin till eof, printing everything

it reads
vector<char*> args {"cat", nullptr};
execvp(args.at(0), args.data());

}
write(pipe_fds.at(1), "the city in rain", strlen("the city in

rain"));
close(pipe_fds.at(1));
close(pipe_fds.at(0));
waitpid(pid, nullptr, 0);

}

It prints the city in rain
However, it doesn’t terminate since the child has its write end open, thus cat never
reads an eof. To fix this, we should add close(pipe_fds.at(1)); before calling
execvp(args.at(0), args.data());in the child process.

3

