CIT 5950 Recitation 10 - Pipe() and HW4

Welcome back to recitation! We're glad that you’re here :)

Exercise 1
int main(int argc, char* argv[]) {
int fd = open("antennas.txt", O RDWR);
pid t pid = fork();
close (STDOUT FILENO);
it (pid == 0) |
cout << "storm\n";
dup2 (fd, STDOUT FILENO); //redirects STDOUT to the file
specified by fd
cout << "static\n";
exit (EXIT SUCCESS) ;
}
waitpid(pid, nullptr, 0);
cout << "sleep\n'";
}
What is printed to the terminal and what is written to antennas.txt?

antennas.txt contains:
static

what was printed:

Nothing gets printed to the terminal since STDOUT FILENO has been closed for both
parent and child

Note:
Write function will fail if STDOUT FILENO is closed. But cout<< has the buffer and
might not be flushed yet, thus the behavior is undefined.

For dup2 (newfd, oldfd)
e necwfd mustbe avalid, open file descriptor.
e ol1dfd does not need to be open; if itis, dup2 will close it without complaining. If
it's not already open, dup2 will just assign it the file descriptor newfd.
Using dup2 to copy a new file descriptor onto STDOUT_FILENO after it's been closed
won’t throw an error. The new file descriptor will take over the standard output stream.

Exercise 2: fill in the blanks

int main (int argc, char** argv) ({

// create a pipe to send input to program
int in pipe[2];

pipe (in_pipe) ;

pid_t pid = fork();

if (pid == 0) {
// child
close(in_pipe[l]); // close writeend
dup2 (in_pipe[0], STDIN _FILENO); // replace stdin with read end of pipe

close(in _pipe[0]); // close read end since it has been duplicated

// exec the program "./numbers" with no command line args
string command("./numbers") ;
char* args[] = {"./numbers", nullptr};

execvp (command.c_str(), args);

// should NEVER get here
return EXIT FAILURE;
} else {

close(in_pipe[0]); // close read end

// write inputs to the pipe
string inputs = "30\n40\n50\n6";

wrapped write(to_echo, in pipe[l]);

// close pipe so that exec'd
// program knows there is no more piped contents to read

close (in_pipel[l]);

// wait for child to finish

waitpid(pid, nullptr, 0);

Exercise 3 What does this print? Does it terminate?
int main(int argc, char* argvl[]) {
array<int, 2> pipe fds {-1, -1};
pipe (pipe fds.data());
pid t pid = fork();
if (pid == 0) {
dup2 (pipe fds.at(0), STDIN FILENO);
close (pipe fds.at(0));

// cat should read from stdin till eof, printing everything

it reads
vector<char*> args {'"cat", nullptr};
execvp (args.at(0), args.data());

}

write (pipe fds.at(l), "the city in rain",

rain"));
close (pipe fds.at(l));
close (pipe fds.at(0));
waitpid(pid, nullptr, 0);

It prints the city in rain

strlen("the city in

However, it doesn’t terminate since the child has its write end open, thus cat never
reads an eof. To fix this, we should add close (pipe fds.at(1l)); before calling
execvp (args.at(0), args.data()) ;in the child process.

