
CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Midterm Review
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

Ash Fujiyama Lang Qin

CV Kunjeti Sean Chuang

Felix Sun Serena Chen

Heyi Liu Yuna Shao

Kevin Bernat

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Upcoming Due Dates

❖ HW2 (Threads)

▪ Released

▪ Due after spring break

❖ Midterm

▪ In person Wednesday Evening 7-9 pm in Towne 100

▪ Next lecture will be dedicated to last minute review

2

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 1)

❖ I do not like midterms that ask you to memorize things

▪ You will still have to memorize some critical things.

▪ I will hint at some things, provide documentation or a summary of
some things. (for example: I will list some of the functions that
may be useful and a brief summary of what the function does)

❖ I am more interested in questions that ask you to:

▪ Apply concepts to solve new problems

▪ Analyze situations to see how concepts from lecture apply

❖ Will there be multiple choice?

▪ If there is, you will still have to justify your choices

3

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 2)

❖ I am still trying to keep the exam fair to you, you must
remember some things

▪ High level concepts or fundamentals. I do not expect you to
remember every minute detail.

• E.g. how a multi level page table works should be know, but not the
exact details of what is in each page table entry

• (I know this boundary is blurry, but hopefully this statement helps)

❖ I am NOT trying to “trick” you (like I sometimes do in poll
everywhere questions)

4

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 3)

❖ I am trying to make sure you have adequate time to stop
and think about the questions.

▪ You should still be wary of how much time you have

▪ But also, remember that sometimes you can stop and take a deep
breath.

❖ Remember that you can move on to another problem.

❖ Remember that you can still move on to the next part
even if you haven’t finished the current part

5

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Midterm Philosophy / Advice (pt. 4)

❖ On the midterm you will have to explain things

❖ Your explanations should be more than just stating a topic
name.

❖ Don't just say something like (for example) "because of
threads" or just state some facts like "threads are parallel
and lightweight processes".

❖ State how the topic(s) relate to the exam problem and
answer the question being asked.

6

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Disclaimer

❖THIS REVIEW IS NOT
EXHAUSTIVE

❖Topics not in this review
are still testable
▪ We recommend going through the course

material. Lecture polls, recitation worksheets, and
the previous homeworks. 7

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Review Topics

❖ C++ Programming

❖ Concurrency & Threads

❖ Scheduling

❖ Processes vs Threads

❖ Memory Hierarchy & Locality

8

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

C++ Programming

❖ Implement the function filter() which takes in a vector of
integers and a set of integers. The function returns a new
vector that contains all of the integers of the input vector,
except for any elements that were in the set.

❖ For example, the following
code should print

▪ 4

▪ 5

9

vector<int> v {3, 4, 5};

set<int> s {3, 6};

auto res = filter(v, s);

for (auto& num : res) {

 cout << num << endl;

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

C++ Programming

10

vector<int> filter(const vector<int>& numbers

 const set<int>& omit) {

 vector<int> result{};

 for (const auto& num : numbers) {

 if (!omit.contains(num)) {

 result.push_back(num);

 }

 }

 return result;

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Concurrency

❖ There are at least 4 bad
practices/mistakes done with
locks in the following code.
Find them.
▪ Assume g_lock and k_lock

have been initialized and will be
cleaned up.

▪ Assume that these functions will
be called by multi-threaded
code.

11

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c; // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Concurrency

❖ k++ could have a data race on
it

❖ k_lock is uncessarily used
around a+=b

❖ g_lock is used when k_lock
should be used

❖ cin >> c does not need to be
locked, could cause significant
delays.

12

pthread_mutex_t g_lock, k_lock;
int g = 0, k = 0;

void fun1() {
pthread_mutex_lock(&g_lock);
g += 3;
pthread_mutex_unlock(&g_lock);
k++;

}

void fun2(int a, int b) {
pthread_mutex_lock(&g_lock);
g += a;
pthread_mutex_unlock(&g_lock);
pthread_mutex_lock(&k_lock);
a += b;
pthread_mutex_unlock(&k_lock);

}

void fun3() {
int c;
pthread_mutex_lock(&g_lock);
cin >> c; // have the user enter an int
k += c;
pthread_mutex_unlock(&g_lock);

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 21.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 15 while

Thread-2 executes line 15.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Mutex

❖ The code below has three functions that could be executed in separate
threads. Note that these are not thread entry points, just functions used by
threads:
▪ Assume that "lock" has been initialized

❖ Thread-1 executes line 8 while

Thread-2 executes line 14

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

❖ Thread-1 executes line 14 while

Thread-2 executes line 16.

Choose one:
▪ Could lead to a race condition.

▪ There is no possible race condition.

▪ The situation cannot occur.

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// global variables

pthread_mutex_t lock;

int g = 0;

int k = 0;

void fun1() {

pthread_mutex_lock(&lock);

g += 3;

pthread_mutex_unlock(&lock);

k++;

}

void fun2(int a, int b) {

g += a;

a += b;

k = a;

}

void fun3() {

pthread_mutex_lock(&lock);

g = k + 2;

pthread_mutex_unlock(&lock);

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ Consider the following pseudocode that uses threads.
Assume that file.txt is large file containing the contents of
a book. Assume that
there is a main() that
creates one thread
running first_thread()
and one thread for
second_thread()

❖ There is a data race.
How do we fix it
using just a mutex?
(where do we add calls to lock and unlock?)

17

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

18

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

19

string data = ""; // global

pthread_mutex_t mutex;

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 pthread_mutex_lock(&mutex);

 data = data_read;

 pthread_mutex_unlock(&mutex);

 }

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is a data race. How do we fix it using just a mutex?
(where do we add calls to lock and unlock?)

20

string data = ""; // global

pthread_mutex_t mutex;

void* second_thread(void* arg) {

 while (true) {

 pthread_mutex_lock(&mutex);

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 pthread_mutex_unlock(&mutex);

 }

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we
have deterministic output? (Assuming the contents of the
file stays the same).

21

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ After we remove the data race on the global string, do we
have deterministic output? (Assuming the contents of the
file stays the same).

▪ No, we could still
have a difference
in output depending
on when threads are
run. It is possible a the
first thread overwrites
the global before
second thread reads it

This is the distinction
between a data race
and a race condition

22

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in
this code. What is it and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

23

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Threads & Data Races

❖ There is an issue of inefficient CPU utilization going on in
this code. What is it and how can we fix it?

❖ (You can describe the
fix at a high level, no
need to write code)

▪ Busy waiting possible
in second_thread.
We could have the
threads use a
condition variable to
wait for data to be
updated and thread1
to signal thread2 once
ready

24

string data = ""; // global

void* first_thread(void* arg) {

 f = open("file.txt", O_RDONLY);

 while (!f.eof()) {

 string data_read = f.read(10 chars);

 data = data_read;

 }

}

void* second_thread(void* arg) {

 while (true) {

 if (data.size() != 0) {

 print(data);

 }

 data = "";

 }

}

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Scheduling

❖ Four processes are executing on one CPU following round
robin scheduling:

❖ You can assume:

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

25

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ What is the earliest time that process C could have
arrived?

❖ Which processes are in the ready queue at time 9?

❖ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be? 26

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ What is the earliest time that process C could have
arrived?

▪ If C arrived at time 0, 1, or 2, it would have run at time 4

▪ C could have shown up at time 3 and come after A in the queue

▪ C showed up at time 3 at earliest
27

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Scheduling

▪ All processes do not block for I/O or any resource.

▪ Context switching and running the Scheduler are instantaneous.

▪ If a process arrives at the same time as the running process’ time
slice finishes, the one that just arrived goes into the ready queue
before the one that just finished its time slice.

❖ Which processes are in the ready queue at time 9?

▪ D is running, so it is not in the queue

▪ A has finished

▪ B and C still have to finish, so they are in the queue.

28

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Scheduling

❖ If this algorithm used a quantum of 3 instead of 2, how
many fewer context switches would there be?

▪ Currently there are 7 context switches

▪ If quantum was 3:

▪ Or:

29

Depends on if C shows

up at time 3 or 4

Either way, only 4

context switches, so 3

less than quantum = 2

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive
computation we wanted to parallelize, we could use
either threads or processes. Which one would be faster
and why?

❖ Let’s say that the code we wanted to parallelize was faulty
and sometimes had the chance to crash. If we wanted to
parallelize still but minimize the effects of program
crashes, which would we choose and why?

30

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say we had a program that did an expensive
computation we wanted to parallelize, we could use
either threads or processes. Which one would be faster
and why?

❖ Probably threads. Threads and processes are both
parallelizable, but processes have a larger overhead since
they have separate address spaces that need to be
switched between.

31

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Processes vs Threads

❖ Let’s say that the code we wanted to parallelize was faulty
and sometimes had the chance to crash. If we wanted to
parallelize still but minimize the effects of program
crashes, which would we choose and why?

❖ We would choose fork since processes have more
isolation between them. If one process crashes, the
others will continue to run (unless something really really
bad happens). If one thread crashes, all the threads in
that process will crash.

32

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various
particles interacting with each other. To do this we have
the following structs to represent a color and a point

❖ If we were to store 100 point structs in an array, and
iterate over all of them, accessing them in order, roughly
how many cache hits and cache misses would we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 33

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Caches Q1

❖ Let's say we are making a program that simulates various
particles interacting with each other. To do this we have
the following structs to represent a color and a point

❖ If we were to store 100 point structs in an array, and
iterate over all of them, accessing them in order, roughly
how many cache hits and cache misses would we have?

▪ Assume:

• a cache line is 64 bytes

• the cache starts empty

• sizeof(point) is 32 bytes, sizeof(color) is 16 bytes 34

struct color {

 int red, green, blue;

};

struct point {

 double x, y;

 struct color c;

};

Roughly every other time we access a point
struct, it will already be in the cache. The other
50% of the time, it needs to be fetched from
memory

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color
structs.

❖ In our simulator, it turns out a VERY common operation is
to iterate over all points and do calculations with their X
and Y values.

❖ How else can we store/represent the point objects to
make this operation faster while still maintaining the
same data? Roughly how many cache hits would we get
from this updated code?

35

CIT 5950, Spring 2024L10: Midterm ReviewUniversity of Pennsylvania

Caches Q2

❖ Consider the previous problem with point and color
structs.

❖ In our simulator, it turns out a VERY common operation is
to iterate over all points and do calculations with their X
and Y values.

❖ How else can we store/represent the point objects to
make this operation faster while still maintaining the
same data? Roughly how many cache hits would we get
from this updated code?

36

Change point to just be:
struct point {

 double x, y;

}

Then Store two arrays:
point arr1[100];

color arr2[100];

// point at index I

// has color arr2[i]

Each time we access a point,
we can now load 4 points into
the cache. We now get ~25
cache misses and 75 hits

	Default Section
	Slide 1: Midterm Review Computer Systems Programming, Spring 2024
	Slide 2: Upcoming Due Dates
	Slide 3: Midterm Philosophy / Advice (pt. 1)
	Slide 4: Midterm Philosophy / Advice (pt. 2)
	Slide 5: Midterm Philosophy / Advice (pt. 3)
	Slide 6: Midterm Philosophy / Advice (pt. 4)
	Slide 7: Disclaimer
	Slide 8: Review Topics
	Slide 9: C++ Programming
	Slide 10: C++ Programming
	Slide 11: Concurrency
	Slide 12: Concurrency
	Slide 13: Threads & Mutex
	Slide 14: Threads & Mutex
	Slide 15: Threads & Mutex
	Slide 16: Threads & Mutex
	Slide 17: Threads & Data Races
	Slide 18: Threads & Data Races
	Slide 19: Threads & Data Races
	Slide 20: Threads & Data Races
	Slide 21: Threads & Data Races
	Slide 22: Threads & Data Races
	Slide 23: Threads & Data Races
	Slide 24: Threads & Data Races
	Slide 25: Scheduling
	Slide 26: Scheduling
	Slide 27: Scheduling
	Slide 28: Scheduling
	Slide 29: Scheduling
	Slide 30: Processes vs Threads
	Slide 31: Processes vs Threads
	Slide 32: Processes vs Threads
	Slide 33: Caches Q1
	Slide 34: Caches Q1
	Slide 35: Caches Q2
	Slide 36: Caches Q2

