University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

C++: Pointers & Dynamic Memory
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

CV Kunjeti Lang Qin
Felix Sun Sean Chuang
Heyi Liu Serena Chen

Kevin Bernat Yuna Shao

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» How is HWO going?

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Administrivia

+» HWO is due on Friday

" Can already setup your docker environment, please do that.
= Should have everything you need after this lecture.

+ Pre-semester survey out today on canvas
" For credit, but answers are anonymous
" Due Wednesday January 315t at 11:59 pm

+» HW1 to be released on Friday or Monday

= should have everything you need either after Wednesday’s or
Monday’s lecture

University of Pennsylvania

Lecture Outline

+» HWO demo

+ Pointers

+» Dynamic memory
+ std::array

LO2: pointers, dynamic memory, RAII

CIT 5950, Spring 2024

University of Pennsylvania

Lecture Outline

+» HWO demo

+» Pointers

+» Dynamic memory
+ std::array

LO2: pointers, dynamic memory, RAII

CIT 5950, Spring 2024

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» What does this code print?

(int main(int argc, char** argv) {)
int xz{5};Kj{m I\
int y {lO};{E;
int& z {x}; // binds the name "z" to x
N += 1;
x += 1;
Ry = yid—
)(=
y += 5;
cout << "x: " <K< x << endl;
cout << "y: " << y << endl;
cout << "z: " <K<K z << endl;
return EXIT_SUCCESS;
}
1\ J

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Pointers

+ Variables that store addresses
" |t stores the address to somewhere in memory
= Must specify a type so the data at that address can be interpreted

equivalent

» Generic definition:{ type* name; |or|type *name; |

" Example:| 1nt *ptr;]

« Declares a variable that can contain an address

- Trying to access that data at that address will treat the data there as
anint

% Pointers can be thought of as references, but you can
reassign what it refers to.

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Pointer Operators

+ Dereference a pointer using the unary * operator

= Access the memory referred to by a pointer
" Can be used to read or write the memory at the address

" Example: [int *ptr = ...; // Assume initialized
int a = *ptr; // read the value
*ptr = a + 2; // write the value

« Get the address of a variable with &

= &foo getsthe address of foo in memory

" Example: [int a = 595;
int *ptr = &a;
*ptr = 2; // ‘a’ now holds 2

CIT 5950, Spring 2024

University of Pennsylvania

LO2: pointers, dynamic memory, RAII

Pointers: assigning

+» There are two ways you can interact with a pointer

+ Assigning/changing what variable the pointer is

“referring” to

+» Assigning/changing the value of the thing it is referring to

(int a = 5930; A
int b = 5950;
int *ptr = &a; // ptr refers to a
\ptr = &b; // ptr now “refers” to b P

int a = 5950;
int *ptr = &a;

// ptr refers to a

*ptr = 3333; // *ptr and ‘a’ hold the value 3333

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

TIuitial values

Pointer Example
are garbage

|
(int main (int argc, char** argv) ({) O0x2001 a -—
int a, b, c; | | | 0x2002 | b __
int* ptr; // ptr is a pointer to an int
0x2003 c Sk
a = 5; -
b = 3; 0x2004 | ptr
ptr = &a;
*ptr = 7;
c = a + Db;
return O;
}
_ J

Assuiming that nteaers and pointers
each i+ into a siwgle memory location

10

University of Pennsylvania

LO2: pointers, dynamic memory, RAII

Pointer Example

e
int a, b, c¢;
int* ptr;

—> a = 5;

— b = 3;
ptr = &a;
*ptr = /5
c =a + b;
return O;

}

int main(int argc, char** argv) {

// ptr is a pointer to an 1int

Assuiming that nteaers and pointers
each i+ into a siwgle memory location

0x2001
0x2002
0x2003
0x2004

CIT 5950, Spring 2024

11

University of Pennsylvania

LO2: pointers, dynamic memory, RAII

Pointer Example

CIT 5950, Spring 2024

e

Assuiming that nteaers and pointers
each i+ into a siwgle memory location

int main (int argc, char** argv) { O0x2001 a 5
int a, b, c; | | | 0x2002 | b 3
int* ptr; // ptr is a pointer to an int

0x2003 c ==
S 0x2004 | ptr | 0x2001
+— ptr = &a;
*ptr = /5
c = a + Db;
return O;
}
_ J

12

University of Pennsylvania

LO2: pointers, dynamic memory, RAII

Pointer Example

(int main (int argc, char** argv) {
int a, b, c¢;
int* ptr; // ptr is a pointer to an int
a = 5;
b = 3;
ptr = &a;

+— *ptr = 7;
c =a + b;

return 0;

}

\

Assuiming that nteaers and pointers
each i+ into a siwgle memory location

0x2001
0x2002
0x2003
0x2004

CIT 5950, Spring 2024

a 7

b 3

c ——
ptr | 0x2001

13

University of Pennsylvania

LO2: pointers, dynamic memory, RAII

Pointer Example

(int main (int argc, char** argv) {
int a, b, c¢;
int* ptr; // ptr is a pointer to an int
a = b5y
b = 3;
ptr = &a;
*ptr = /5
+— C = a + b;

return 0;

Assuiming that nteaers and pointers
each i+ into a siwgle memory location

0x2001
0x2002
0x2003
0x2004

CIT 5950, Spring 2024

a 7

b 3

C 10
ptr | 0x2001

14

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» What does this code print?

(int main (int argc, char** argv) { A
int x {5};
int y {10};
int* z {&x};
*z += 1;
X += 1;
z = &y7
*z += 1;
cout << "x: " << x << endl;
cout << "y: " << vy << endl;
cout << "z: " << *z << endl;
return EXIT SUCCESS;

}
. J

15

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x =5, y = 10; x 5
) nt* 7z = &X;

ARz

x += 1; Yy 10
z = &y;

~z +=1;

return EXIT SUCCESS;

16

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x =5, y = 10; x 5
int* z = &x;

— <z += 1;
X += 1; Yy 10

z = &y;
~z +=1;

Z 0x7ﬂ5fma4

return EXIT SUCCESS;

17

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { p
int x = 5, y = 10; % 6
int* z = &x;
*z += 1; // sets x to 6

—) x += 1; - 10
z = &y;
*7 4= H \
return EXIT SUCCESS; z |0x780f..a4
}
\ y

18

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x =5, y = 10; x 7
int* z = &x;

*z 4= 1; // sets x to 6
x += 1; // sets x (and *z) to 7

V4 10

N

4 Ox7ﬁ5fma4

—) 7 = &Y;
~z +=1;

return EXIT SUCCESS;

19

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) { b
int x =5, y = 10; X 7
int* z = &x;
*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7 v 10

z = &y; // sets z to the address of y
— *z += 1;

z Ox7f&fma0

return EXIT SUCCESS;

20

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Note: Arrow points

Pointers Reminder to next instruction.

+ A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

" These work the same in C and C++

(int main (int argc, char** argv) {
int x {5}, y {10}; X I
int* z {&x};

*z 4= 1; // sets x to 6
X += 1; // sets x (and *z) to 7 y 11

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11

z Ox7f&fma0

m—p return EXIT SUCCESS;
}

\. J

21

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

C++ nullptr

+» C++ can have pointers that refer to nothing by assigning
pointers the value

» nullptr is a useful indicator to indicate that the pointer
is currently uninitialized or not in use.

+ Trying to dereference or “access the value at” a pointer
holding nullptr, will guarantee* your program to crash

22

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

const and Pointers

o0

o0

Pointers can change data in two different contexts:

N _\' Y -
nw P
2) You can change the thing the pointer points to

int X
1) You can change the value of the pointer %) - X1—]
L%'

(via dereference)

const can be used to prevent either/both of these
behaviors!

" const next to pointer name means you can’t change the value of
: : YN
the pointer it B const P

R . , :
" const next to data type pointed to means you can’t use this

pointer to change the thing being pointed to @ *L\‘o i
= Tip: read variable declaration from right-to-left

23

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

const and Pointers

+» The syntax with pointers is confusing: 1%/
(. . \ \
int main(int argc, char** argv) {
int x {5}; // int
const int y {6}; // (const 1int)
Q v++;
const int *z {&y}; // pointer to a (const 1int)
Oz += 1;
®@:z = nullptr;
int *const w {&x}; // (const pointer) to a (variable int)
® w += 1;
O w = nullptr;
const int *const v {&x}; // (const pointer) to a (const int)
0 v += 1;
0 v = nullptr;
return EXIT SUCCESS;
\} J

constmadness.cc ,,

University of Pennsylvania

Lecture Outline

+» HWO demo

+ Pointers

+» Dynamic memory
+ std::array

LO2: pointers, dynamic memory, RAII

CIT 5950, Spring 2024

25

University of Pennsylvania

LO2: pointers, dynamic memory, RAII

Stack Example:

/ginclude <iostream>)
#include <cstdlib>

—t>int sum(int n) {
int sum = O
for (int 1

sum += 1;

II e

0; i < n; i++) {

}

return sum;

int main() {
int sum = sum(3) ;
cout << "sum: " << sum;
cout << endl;
return EXIT SUCCESS;

CIT 5950, Spring 2024

Stack frame for
main ()

Stack frame for
sum ()

26

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Stack Example 1:

o . ~ Stack frame for
#include <lostr§am> main ()
#include <cstdlib>
int sum(int n) { sum () ’s stack frame

int sum = 0
for (int 1
sum += 1i;

goes away after
sum () returns.

Il e

0; i < n; i++) {

}

main ()’s stack frame
return sum;]
) is now top of the stack
and we keep executing
int main() { main ()
int sum = sum(3);
—4 5 cout << "sum: " << sum;

cout << endl;
return EXIT SUCCESS;

27

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Stack Example:

Stack frame for

- - D
#include <iostream> main ()

#include <cstdlib>

int sum(int n) {
int sum = 0
for (int 1
sum += 1;

Stack frame for
cout << string

II e

0; i < n; i++) {

}

return sum;

int main() {
int sum = sum(3);
—1 ., cout << "sum: " << sum;
cout << endl;
return EXIT SUCCESS;

28

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Stack

«» @Grows, but has a static max size

" Can find the default size limit with the command ulimit —-all
(May be a different command in different shells and/or linux
versions. Works in bash on Ubuntu though)

= Can also be found at runtime with getrlimit (3)

+» Max Size of a stack can be changed
" at run time with setrlimit (3)

= At compilation time for some systems (not on Linux it seems)
= (or at the creation of a thread)

29

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings
can be ignored for now)

(string& get string() {
string greeting{"hello world!"};
return greeting;

}

int main(int argc, char** argv) {
string& s = get string();
cout << s << endl;

return EXIT SUCCESS;
}

30

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings

can be ignored for now) — : N
stringé& get string() {

string greeting{"hello world!"};
return greeting;

}

main()’s stack frame

int main(int argc, char** argv) {
string& s = get string();
cout << s << endl;

return EXIT SUCCESS;
}

31

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings

can be ignored for now) — : N
stringé& get string() {

string greeting{"hello world!"};
return greeting;

main()’s stack frame

}

int main(int argc, char** argv) {
string& s = get string();
cout << s << endl;

get_string()’s stack frame
return EXIT SUCCESS;

greeting | hello world! }

32

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings

can be ignored for now) — : N
stringé& get string() {

string greeting{"hello world!"};
return greeting;

main()’s stack frame

}

S —_—
5555555“‘\\\\\ int main(int argc, char** argv) {

string& s = get string();
cout << s << endl;

return EXIT SUCCESS;

greeting fhello world! }

33

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

@ Poll Everywhere pollev.com/tqm

+» Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings
can be ignored for now) — _ N
stringé& get string() {

string greeting{"hello world!"};
return greeting;

}

S —_—
5555555“‘\\\\\ int main(int argc, char** argv) {
string& s = get string();
4‘///) cout << s << endl;
return EXIT SUCCESS;
}

272222727 x J

main()’s stack frame

34

University of Pennsylvania

Memory Allocation

LO2: pointers, dynamic memory, RAII

CIT 5950, Spring 2024

+ So far, we have seen two kinds of memory allocation:

(int counter = 0; // global var) (int foo(int a) { h
int x = a + 1; // local var
int main () { return X;
counter++; }
cout << "count = " << counter;
cout << endl; int main () {
return 0: int y = foo(10); // local var
L) cout << "y = " << y << endl;
return 0;
" counter is statically-allocated)
J

- Allocated when program is loaded

- Deallocated when program exits

" a, x, vy areautomatically-
allocated

« Allocated when function is called

Q‘Qﬁ Deallocated when function returns

35

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

What is Dynamic Memory Allocation?

+» We want Dynamic Memory Allocation

" Dynamic means “at run-time”

" The compiler and the programmer don’t have enough information
to make a final decision on how much to allocate or how long the
data “should live”.

«» Dynamic memory can be of variable size:

" Your program explicitly requests more memory at run time

" The language allocates it at runtime, probably with help of the OS

« Dynamically allocated memory persists until either:

= A garbage collector collects it (automatic memory management)

" Your code explicitly deallocates it (manual memory management)

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

The Heap

+» The Heap is a large pool of available memory to use for
Dynamic allocation

+ This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

37

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

C++ keyword: new

+» C++ keyword new is used to allocate space on the heap.

= We specify a type and initial value which will be constructed
and/or initialized for us.

(String *get string () {
string *greeting = new string("hello world!");
return greeting;

}

int main(int argc, char** argv) {
string *s = get string();
cout <<s << endl;

return EXIT SUCCESS;
}

\ J

38

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Dynamic Memory Deallocation

L)

>

» Dynamic memory has a dynamic “lifetime”
= Stack data is deallocated when the function returns
" Heap data is deallocated when our program deallocates it

+ In high level languages like Java or Python, garbage
collection is used to deallocate data

" This has significant overhead for larger programs

» Crequires you to manually manage memory

" And so is easy to screw up

% C++ and Rust have RAIl (more on this later this lecture)

" Harder to screw-up, and much less overhead

39

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Dynamic Memory Deallocation

+» When is the string we allocate deallocated?

(String *get string () {
string *greeting = new string("hello world!");
return greeting;

}

int main(int argc, char** argv) {
string *s = get string();
cout << *s << endl;

return EXIT SUCCESS;
}

\ J

40

CIT 5950, Spring 2024

University of Pennsylvania LO2: pointers, dynamic memory, RAII

C++ keyword: delete

+» C++ keyword delete is used to deallocate space on the
heap.

(String *get string () {
string *greeting = new string("hello world!");

return greeting;

}

int main(int argc, char** argv) {
string *s = get string();
cout << *s << endl;
delete s;
return EXIT SUCCESS;

41

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

The Heap

o0

o0

>

o0

L)

>

o0

L)

KEY TAKEAWAY: allocating on the
heap is not free, it has overhead

The Heap is a large pool of available memory to use for
Dynamic allocation

This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

new.
= searches for a large enough unused block of memory

" marks the memory as allocated.
= Returns a pointer to the beginning of that memory

delete:

" Takes in a pointer to a previously allocated address
" Marks the memory as free to use.

42

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Free Lists

+» One way that allocation can be implemented is by

maintaining an implicit list of the space available and
space allocated.

+ Before each chunk of allocated/free memory, we’ll also
have this metadata:

(// this is simplified
// not what malloc/new really does
struct alloc_info ({

alloc info* prev;

alloc info* next;

bool allocated;

size € sizes;

43

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Dynamic Memory Example

(™
int main () { . . .
1 short* ptr = new short(16); T\/HS dl&l@lf&l\/l/\ 1S
double* ptr2 = new double(3.14); V]O’l' ’l’O SO&\[@

... // do stuff with ptr
delete ptr;
delete ptr2;

}

+ free list —> M

NULL, :
NULL, The metadoata s at

false, +he beginning of the

1024
} chunk of memory

44

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Dynamic Memory Example | "¢¢ ¢k can

be split o
g b allocate blocks of
int main() { SPGCH:‘O 5\2'/@
—}» short* ptr = new short(106);
double* ptr2 = new double (3.14); new QG‘l’S Y,
// d ff with : ‘
delete ptr: J R R PR seinter to just
| delete ptr2; ﬂl‘F"’@l’Q ,H/]@
L | metadata
S a1\
o free_list // header header
K — < v
v v { .
new / NULL, { 0 free list
return 0 Xy ‘
value t};ué NULL, ponts To first

false,

4 1020 free chunk
}
}

45

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Dynamic Memory Example

()

int main () {
short* ptr = new short(16);

-1+ double* ptr2 = new double(3.14);

. .. // do stuff with ptr
delete ptr;
delete ptr2;

}

\. J

’/’,1:<:r v

o free_li St // header
/
/
nnewn / {NULL { {O
return ' 0%y e
1ue 0x..., Ox.. NULL,
va !
true, true, false,
4 54 996

46

University of Pennsylvania

Dynamic Memory Example

LO2: pointers, dynamic memory, RAII

CIT 5950, Spring 2024

()
int main () {
short* ptr = new short(1lo);
double* ptr2 = new double(3.14);
. // do stuff with ptr
—1*> delete ptr;
delete ptr2;
}
_ J
header header header

+ free list——

{
NULL, 0x..., 0x...,
0x..., 0%..., NULL,
false, true, false,
4 24 996
} } J a7

University of Pennsylvania

Dynamic Memory Example

LO2: pointers, dynamic memory, RAII

7

.

+ free list——"

CIT 5950, Spring 2024

N
int main () {
short* ptr = new short(1lo);
double* ptr2 = new double(3.14);
... // do stuff with ptr
delete ptr;
—1> delete ptr2;
}
J
header header

{
NULL,

0x...,
false,
4

}

{

}

0x...
0x...
false,

24

14

14

{

}

0x...,
NULL,
false,
996

48

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Ouce a block has beew
freed, we can try to

- N “coalesce” I+ with
their neighbors

Dynamic Memory Example

int main () {
short* ptr = new short(1lo);
double* ptr2 = new double(3.14);

. .. // do stuff with ptr T\/]@ 'ﬁrS'{' d@[@+@
delete ptr; /
| I conldn’+ be coalesced,
} only veighbor was
N 7 allocated

» free list—— "

I

{
NULL,

0x...,

false,
1024

49

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Key Takeaway

<~ Dynamic memory allocation is not free and can have
considerable overhead

+» Performant C++ code minimizes the number of dynamic
allocations and/or custom allocators

50

University of Pennsylvania LO2: pointers, dynamic memory, RAII

Lecture Outline

< HWO demo

+ Pointers

+» Dynamic memory

+ std::vec allocations and std::array

CIT 5950, Spring 2024

51

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Why would | use new?

+ In “real” or “modern” C++ code, you would not explicitly
use new or delete yourself.

« |In most cases, a vector or other data structure can be
used, and you never have to allocate memory yourself

+» whenever you are using objects from the C++ standard
library (like vector), those objects will do memory
allocation.

52

University of Pennsylvania LO2: pointers, dynamic memory, RAII

vector Example

CIT 5950, Spring 2024

(#include <iostream> b
#include <vector>
using namespace std;
int main(int argc, char** argv) {
vector<int> vec; <— Covstruct empty vector
cout << "vec.push back " << 3 << endl;
vec.push back (3) ;) Add elements to
cout << "vec.push back " << 4 << endl; end of vector
vec.push_back (4) ; o
cout << "vec.push back " << 5 << end%k////
vec.push back (5) ;
cout << "vec|[0]" << endl << vec,at(0) << endl;
cout << "vec[Z]" << endl << vec.at(?2) << endl;
return EXIT SUCCESS;
}
\ J

53

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Where is the allocation?

><i><

,apaciJ;

vee | 3 4 5

Capacity = 4

Note:
- Capacity donbles each time capacity is reached

54

University of Pennsylvania LO2: pointers, dynamic memory, RAII

Where is the deletion?

« This code has allocation, where is the deallocation?

CIT 5950, Spring 2024

-)
#include <iostream>
#include <vector>

using namespace std;

int main(int argc, char** argv) {

vector<int> wvec;

cout << "vec.push back " << 3 << endl;
vec.push back (3);
cout << "vec.push back " << 4 << endl;
vec.push back (4) ;
cout << "vec.push back " << 5 << endl;
vec.push back (5) ;

cout << "vec[0]" << endl << vec,at (0) << endl;
cout << "vec[2]" << endl << vec.at(?2) << endl;

return EXIT_SUCCESS;

55

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Destructors

% C++ has the notion of a destructor (dtor)

" |nvoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

ﬁPlace to put your cleanup code — free any dynamic storage or
other resources owned by the object

= Standard C++ idiom for managing dynamic resources
- Slogan: “Resource Acquisition Is Initialization” (RAIl)

tilde No parameters More on RALT wn a later lecture
e , ¥ : -
MyObj: : ~MyObj () { // destructor
// do any cleanup needed when a "MyObj" object goes away
// (nothing to do here since we have no dynamic resources)

N

When a destructor is invoked:
1. run destructor body
2. Call destructor of any data members

56

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Destructor Example

(class Integer { Allocates memory v the)
public: 7 constructor
Integer (int val) : val (new int (val)) // Constructor
} Without destructor, the
7 memory wouldn'+ be freed
~Integer () { delete val ; } // Destructor
int get value() { return *val ; } // inline member function
private:
int* val ; // data member
}Y; // class Integer
Integer.h
\ J
[#include "Integer.h"“]
#include <iostream>
int main(int argc, char** argv) {
Integer best course{5950};
cout << best course.get value () << endl;
return EXIT_SUCCESS;: Destruct the object when it falls
|} out of scope (when we return)]

57

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

Default Destructor

» 9 out of ten times, most objects do not need to create an
explicit destructor.

» Destructors can be specified to be a default the C++
generates for you

- The default destructor just runs the destructor of any data
member (fields) the object has.

= So, if your custom object has a vector or a map, then those data
structures will automatically get destructed/”cleaned-up”

58

University of Pennsylvania LO2: pointers, dynamic memory, RAII

Default Destructor Example

CIT 5950, Spring 2024

[#ifndef POINT HPP_)
#define POINT HPP
- Default destructor since we
class Point { don’t do any allocation in Point
public:
Point (int x, int y)}/// // constructor
~Point () = default;
int get x() { return x ; } // inline member function
int get y() { return y ; } // inline member function
double Distance (Point p); // member function
void SetLocation(int x, int y); // member function
private:
int x ; // data member
int y ; // data member
}Y; // class Point
#endif // POINT HPP_
\. J

59

University of Pennsylvania LO2: pointers, dynamic memory, RAII CIT 5950, Spring 2024

std::array

+ Similar to vector, we have array

" Both contain a sequence of data that we can index into

+» Main differences: the size
= Vector is resizable (grows to whatever length we need)
" Array is a static size (size is determined at compile time)

« Main differences: the allocation
" To support being resizable, vector uses a lot of dynamic allocation
= Array does not use any dynamic allocation

60

University of Pennsylvania LO2: pointers, dynamic memory, RAII

array example

CIT 5950, Spring 2024

(int main(int argc, char* argv([]) {
array<int, 3> arr {6, 5, 4};
// arr.push back (3); push back does not exist!

cout << arr.size () << endl; // prints 3
cout << arr.at(2) << endl; // prints 4

// iterates through all elements and prints them
for (const auto& element : arr) {
cout << element << endl;

return EXIT_SUCCESS;

61

	Default Section
	Slide 1: C++: Pointers & Dynamic Memory Computer Systems Programming, Spring 2024
	Slide 2
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Lecture Outline
	Slide 6
	Slide 7: Pointers
	Slide 8: Pointer Operators
	Slide 9: Pointers: assigning
	Slide 10: Pointer Example
	Slide 11: Pointer Example
	Slide 12: Pointer Example
	Slide 13: Pointer Example
	Slide 14: Pointer Example
	Slide 15
	Slide 16: Pointers Reminder
	Slide 17: Pointers Reminder
	Slide 18: Pointers Reminder
	Slide 19: Pointers Reminder
	Slide 20: Pointers Reminder
	Slide 21: Pointers Reminder
	Slide 22: C++ nullptr
	Slide 23: const and Pointers
	Slide 24: const and Pointers
	Slide 25: Lecture Outline
	Slide 26: Stack Example:
	Slide 27: Stack Example 1:
	Slide 28: Stack Example:
	Slide 29: Stack
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Memory Allocation
	Slide 36: What is Dynamic Memory Allocation?
	Slide 37: The Heap
	Slide 38: C++ keyword: new
	Slide 39: Dynamic Memory Deallocation
	Slide 40: Dynamic Memory Deallocation
	Slide 41: C++ keyword: delete
	Slide 42: The Heap
	Slide 43: Free Lists
	Slide 44: Dynamic Memory Example
	Slide 45: Dynamic Memory Example
	Slide 46: Dynamic Memory Example
	Slide 47: Dynamic Memory Example
	Slide 48: Dynamic Memory Example
	Slide 49: Dynamic Memory Example
	Slide 50: Key Takeaway
	Slide 51: Lecture Outline
	Slide 52: Why would I use new?
	Slide 53: vector Example
	Slide 54: Where is the allocation?
	Slide 55: Where is the deletion?
	Slide 56: Destructors
	Slide 57: Destructor Example
	Slide 58: Default Destructor
	Slide 59: Default Destructor Example
	Slide 60: std::array
	Slide 61: array example

