
CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

C++: Pointers & Dynamic Memory
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

CV Kunjeti Lang Qin

Felix Sun Sean Chuang

Heyi Liu Serena Chen

Kevin Bernat Yuna Shao

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ How is HW0 going?

2

pollev.com/tqm

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Administrivia

❖ HW0 is due on Friday

▪ Can already setup your docker environment, please do that.

▪ Should have everything you need after this lecture.

❖ Pre-semester survey out today on canvas

▪ For credit, but answers are anonymous

▪ Due Wednesday January 31st at 11:59 pm

❖ HW1 to be released on Friday or Monday

▪ should have everything you need either after Wednesday’s or
Monday’s lecture

3

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Lecture Outline

❖ HW0 demo

❖ Pointers

❖ Dynamic memory

❖ std::array

4

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Lecture Outline

❖ HW0 demo

❖ Pointers

❖ Dynamic memory

❖ std::array

5

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ What does this code print?

6

pollev.com/tqm

int main(int argc, char** argv) {

 int x {5};

 int y {10};

 int& z {x}; // binds the name "z" to x

 z += 1;

 x += 1;

 z = y;

 z += 1;

 y += 5;

 cout << "x: " << x << endl;

 cout << "y: " << y << endl;

 cout << "z: " << z << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointers

❖ Variables that store addresses

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition: type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address

• Trying to access that data at that address will treat the data there as
an int

❖ Pointers can be thought of as references, but you can
reassign what it refers to.

7

int *ptr;

type* name; type *name;

equivalent

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:

8

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 595;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointers: assigning

❖ There are two ways you can interact with a pointer

❖ Assigning/changing what variable the pointer is
“referring” to

❖ Assigning/changing the value of the thing it is referring to

9

int a = 5930;

int b = 5950;

int *ptr = &a; // ptr refers to a

ptr = &b; // ptr now “refers” to b

int a = 5950;

int *ptr = &a; // ptr refers to a

*ptr = 3333; // *ptr and ‘a’ hold the value 3333

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

0x2001 a --

0x2002 b --

0x2003 c --

0x2004 ptr --

Pointer Example

10

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

Initial values

are garbage

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr --

Pointer Example

11

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

x --

p --

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

12

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

13

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c 10

0x2004 ptr 0x2001

Pointer Example

14

int main(int argc, char** argv) {

 int a, b, c;

 int* ptr; // ptr is a pointer to an int

 a = 5;

 b = 3;

 ptr = &a;

 *ptr = 7;

 c = a + b;

 return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ What does this code print?

15

pollev.com/tqm

int main(int argc, char** argv) {

 int x {5};

 int y {10};

 int* z {&x};

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 cout << "x: " << x << endl;

 cout << "y: " << y << endl;

 cout << "z: " << *z << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

16

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

x 5

y 10

z

Note: Arrow points
to next instruction.

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

17

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1;

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

18

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1;

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

19

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y;

 *z += 1;

 return EXIT_SUCCESS;

}

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

20

int main(int argc, char** argv) {

 int x = 5, y = 10;

 int* z = &x;

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y

 *z += 1;

 return EXIT_SUCCESS;

}

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

21

int main(int argc, char** argv) {

 int x {5}, y {10};

 int* z {&x};

 *z += 1; // sets x to 6

 x += 1; // sets x (and *z) to 7

 z = &y; // sets z to the address of y

 *z += 1; // sets y (and *z) to 11

 return EXIT_SUCCESS;

}

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

C++ nullptr

❖ C++ can have pointers that refer to nothing by assigning
pointers the value nullptr

❖ nullptr is a useful indicator to indicate that the pointer
is currently uninitialized or not in use.

❖ Trying to dereference or “access the value at” a pointer
holding nullptr, will guarantee* your program to crash

22

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

const and Pointers

❖ Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to
(via dereference)

❖ const can be used to prevent either/both of these
behaviors!
▪ const next to pointer name means you can’t change the value of

the pointer

▪ const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

▪ Tip: read variable declaration from right-to-left

23

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

const and Pointers

❖ The syntax with pointers is confusing:

24

int main(int argc, char** argv) {

 int x {5}; // int

 const int y {6}; // (const int)

 y++;

 const int *z {&y}; // pointer to a (const int)

 *z += 1;

 z = nullptr;

 int *const w {&x}; // (const pointer) to a (variable int)

 *w += 1;

 w = nullptr;

 const int *const v {&x}; // (const pointer) to a (const int)

 *v += 1;

 v = nullptr;

 return EXIT_SUCCESS;

}

constmadness.cc

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Lecture Outline

❖ HW0 demo

❖ Pointers

❖ Dynamic memory

❖ std::array

25

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Stack Example:

26

#include <iostream>

#include <cstdlib>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 cout << "sum: " << sum;

 cout << endl;

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

int n;

int sum;

int i;

Stack frame for
sum()

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Stack Example 1:

27

#include <iostream>

#include <cstdlib>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 cout << "sum: " << sum;

 cout << endl;

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

sum()’s stack frame
goes away after
sum() returns.

main()’s stack frame
is now top of the stack
and we keep executing
main()

????

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Stack Example:

28

#include <iostream>

#include <cstdlib>

int sum(int n) {

 int sum = 0;

 for (int i = 0; i < n; i++) {

 sum += i;

 }

 return sum;

}

int main() {

 int sum = sum(3);

 cout << "sum: " << sum;

 cout << endl;

 return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for
cout << string

????

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Stack

❖ Grows, but has a static max size
▪ Can find the default size limit with the command ulimit –all

(May be a different command in different shells and/or linux
versions. Works in bash on Ubuntu though)

▪ Can also be found at runtime with getrlimit(3)

❖ Max Size of a stack can be changed
▪ at run time with setrlimit(3)

▪ At compilation time for some systems (not on Linux it seems)

▪ (or at the creation of a thread)

29

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings
can be ignored for now)

30

pollev.com/tqm

string& get_string() {

 string greeting{"hello world!"};

 return greeting;

}

int main(int argc, char** argv) {

 string& s = get_string();

 cout << s << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings
can be ignored for now)

31

pollev.com/tqm

string& get_string() {

 string greeting{"hello world!"};

 return greeting;

}

int main(int argc, char** argv) {

 string& s = get_string();

 cout << s << endl;

 return EXIT_SUCCESS;

}

main()’s stack frame

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings
can be ignored for now)

32

pollev.com/tqm

string& get_string() {

 string greeting{"hello world!"};

 return greeting;

}

int main(int argc, char** argv) {

 string& s = get_string();

 cout << s << endl;

 return EXIT_SUCCESS;

}

main()’s stack frame

get_string()’s stack frame

greeting hello world!

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings
can be ignored for now)

33

pollev.com/tqm

string& get_string() {

 string greeting{"hello world!"};

 return greeting;

}

int main(int argc, char** argv) {

 string& s = get_string();

 cout << s << endl;

 return EXIT_SUCCESS;

}

main()’s stack frame

get_string()’s stack frame

greeting hello world!

s

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings
can be ignored for now)

34

pollev.com/tqm

string& get_string() {

 string greeting{"hello world!"};

 return greeting;

}

int main(int argc, char** argv) {

 string& s = get_string();

 cout << s << endl;

 return EXIT_SUCCESS;

}

main()’s stack frame

????????

s

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Memory Allocation

❖ So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main() {

 counter++;

 cout << "count = " << counter;

 cout << endl;

 return 0;

}

int foo(int a) {

 int x = a + 1; // local var

 return x;

}

int main() {

 int y = foo(10); // local var

 cout << "y = " << y << endl;

 return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

35

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information
to make a final decision on how much to allocate or how long the
data “should live”.

❖ Dynamic memory can be of variable size:

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, probably with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code explicitly deallocates it (manual memory management)
36

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for
Dynamic allocation

❖ This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

37

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

C++ keyword: new

❖ C++ keyword new is used to allocate space on the heap.

▪ We specify a type and initial value which will be constructed
and/or initialized for us.

38

string *get_string() {

 string *greeting = new string("hello world!");

 return greeting;

}

int main(int argc, char** argv) {

 string *s = get_string();

 cout << s << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Dynamic Memory Deallocation

❖ Dynamic memory has a dynamic “lifetime”

▪ Stack data is deallocated when the function returns

▪ Heap data is deallocated when our program deallocates it

❖ In high level languages like Java or Python, garbage
collection is used to deallocate data

▪ This has significant overhead for larger programs

❖ C requires you to manually manage memory

▪ And so is easy to screw up

❖ C++ and Rust have RAII (more on this later this lecture)

▪ Harder to screw-up, and much less overhead

39

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Dynamic Memory Deallocation

❖ When is the string we allocate deallocated?

40

string *get_string() {

 string *greeting = new string("hello world!");

 return greeting;

}

int main(int argc, char** argv) {

 string *s = get_string();

 cout << *s << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

C++ keyword: delete

❖ C++ keyword delete is used to deallocate space on the
heap.

41

string *get_string() {

 string *greeting = new string("hello world!");

 return greeting;

}

int main(int argc, char** argv) {

 string *s = get_string();

 cout << *s << endl;

 delete s;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

The Heap

❖ The Heap is a large pool of available memory to use for
Dynamic allocation

❖ This pool of memory is kept track of with a small data
structure indicating which portions have been allocated,
and which portions are currently available.

❖ new:

▪ searches for a large enough unused block of memory

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ delete:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

42

KEY TAKEAWAY: allocating on the
heap is not free, it has overhead

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Free Lists

❖ One way that allocation can be implemented is by
maintaining an implicit list of the space available and
space allocated.

❖ Before each chunk of allocated/free memory, we’ll also
have this metadata:

43

// this is simplified

// not what malloc/new really does

struct alloc_info {

 alloc_info* prev;

 alloc_info* next;

 bool allocated;

 size_t size;

};

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ free_list ->

Dynamic Memory Example

44

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header

{

 NULL,

 NULL,

 false,

 1024

}

This diagram is

not to scale

The metadata is at

the beginning of the

chunk of memory

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

45

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 NULL,

 false,

 1020

}

"new"

return

value

Free chunks can

be split to

allocate blocks of

specific size

new gets a

pointer to just

after the

metadata

free_list

points to first

free chunk

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

46

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

"new"

return

value

{

 0x…,

 NULL,

 false,

 996

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

47

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

48

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 false,

 24

}

{

 0x…,

 NULL,

 false,

 996

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ free_list

Dynamic Memory Example

49

int main() {

 short* ptr = new short(16);

 double* ptr2 = new double(3.14);

 ... // do stuff with ptr

 delete ptr;

 delete ptr2;

}

header

{

 NULL,

 0x…,

 false,

 1024

}

Once a block has been

freed, we can try to

“coalesce” it with

their neighbors

The first delete

couldn’t be coalesced,

only neighbor was

allocated

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Key Takeaway

❖ Dynamic memory allocation is not free and can have
considerable overhead

❖ Performant C++ code minimizes the number of dynamic
allocations and/or custom allocators

50

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Lecture Outline

❖ HW0 demo

❖ Pointers

❖ Dynamic memory

❖ std::vec allocations and std::array

51

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Why would I use new?

❖ In “real” or “modern” C++ code, you would not explicitly
use new or delete yourself.

❖ In most cases, a vector or other data structure can be
used, and you never have to allocate memory yourself

❖ whenever you are using objects from the C++ standard
library (like vector), those objects will do memory
allocation.

52

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

vector Example

53

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

 vector<int> vec;

 cout << "vec.push_back " << 3 << endl;

 vec.push_back(3);

 cout << "vec.push_back " << 4 << endl;

 vec.push_back(4);

 cout << "vec.push_back " << 5 << endl;

 vec.push_back(5);

 cout << "vec[0]" << endl << vec,at(0) << endl;

 cout << "vec[2]" << endl << vec.at(2) << endl;

 return EXIT_SUCCESS;

}

Construct empty vector

Add elements to

end of vector

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Where is the allocation?

54

3 4 4

Note:

- Capacity doubles each time capacity is reached

3vec

Capacity = 1

3vec 4

Capacity = 2

3vec 4

Capacity = 4

5

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Where is the deletion?

❖ This code has allocation, where is the deallocation?

55

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

 vector<int> vec;

 cout << "vec.push_back " << 3 << endl;

 vec.push_back(3);

 cout << "vec.push_back " << 4 << endl;

 vec.push_back(4);

 cout << "vec.push_back " << 5 << endl;

 vec.push_back(5);

 cout << "vec[0]" << endl << vec,at(0) << endl;

 cout << "vec[2]" << endl << vec.at(2) << endl;

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out
of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or
other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

56

MyObj::~MyObj() { // destructor

 // do any cleanup needed when a "MyObj" object goes away

 // (nothing to do here since we have no dynamic resources)

}

tilde No parameters

When a destructor is invoked:

1. run destructor body

2. Call destructor of any data members

More on RAII in a later lecture

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Destructor Example

57

class Integer {

 public:

 Integer(int val) : val_(new int(val)) { // Constructor

 }

 ~Integer() { delete val_; } // Destructor

 int get_value() { return *val_; } // inline member function

 private:

 int* val_; // data member

}; // class Integer

Integer.h

#include "Integer.h“

#include <iostream>

int main(int argc, char** argv) {

 Integer best_course{5950};

 cout << best_course.get_value() << endl;

 return EXIT_SUCCESS;

}

Without destructor, the

memory wouldn’t be freed

Destruct the object when it falls

out of scope (when we return)

Allocates memory in the

constructor

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Default Destructor

❖ 9 out of ten times, most objects do not need to create an
explicit destructor.

❖ Destructors can be specified to be a default the C++
generates for you

❖ The default destructor just runs the destructor of any data
member (fields) the object has.

▪ So, if your custom object has a vector or a map, then those data
structures will automatically get destructed/”cleaned-up”

58

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Default Destructor Example

59

#ifndef POINT_HPP_

#define POINT_HPP_

class Point {

 public:

 Point(int x, int y); // constructor

 ~Point() = default;

 int get_x() { return x_; } // inline member function

 int get_y() { return y_; } // inline member function

 double Distance(Point p); // member function

 void SetLocation(int x, int y); // member function

 private:

 int x_; // data member

 int y_; // data member

}; // class Point

#endif // POINT_HPP_

Default destructor since we
don’t do any allocation in Point

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

std::array

❖ Similar to vector, we have array

▪ Both contain a sequence of data that we can index into

❖ Main differences: the size

▪ Vector is resizable (grows to whatever length we need)

▪ Array is a static size (size is determined at compile time)

❖ Main differences: the allocation

▪ To support being resizable, vector uses a lot of dynamic allocation

▪ Array does not use any dynamic allocation

60

CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

array example

61

int main(int argc, char* argv[]) {

 array<int, 3> arr {6, 5, 4};

 // arr.push_back(3); push_back does not exist!

 cout << arr.size() << endl; // prints 3

 cout << arr.at(2) << endl; // prints 4

 // iterates through all elements and prints them

 for (const auto& element : arr) {

 cout << element << endl;

 }

 return EXIT_SUCCESS;

}

	Default Section
	Slide 1: C++: Pointers & Dynamic Memory Computer Systems Programming, Spring 2024
	Slide 2
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Lecture Outline
	Slide 6
	Slide 7: Pointers
	Slide 8: Pointer Operators
	Slide 9: Pointers: assigning
	Slide 10: Pointer Example
	Slide 11: Pointer Example
	Slide 12: Pointer Example
	Slide 13: Pointer Example
	Slide 14: Pointer Example
	Slide 15
	Slide 16: Pointers Reminder
	Slide 17: Pointers Reminder
	Slide 18: Pointers Reminder
	Slide 19: Pointers Reminder
	Slide 20: Pointers Reminder
	Slide 21: Pointers Reminder
	Slide 22: C++ nullptr
	Slide 23: const and Pointers
	Slide 24: const and Pointers
	Slide 25: Lecture Outline
	Slide 26: Stack Example:
	Slide 27: Stack Example 1:
	Slide 28: Stack Example:
	Slide 29: Stack
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Memory Allocation
	Slide 36: What is Dynamic Memory Allocation?
	Slide 37: The Heap
	Slide 38: C++ keyword: new
	Slide 39: Dynamic Memory Deallocation
	Slide 40: Dynamic Memory Deallocation
	Slide 41: C++ keyword: delete
	Slide 42: The Heap
	Slide 43: Free Lists
	Slide 44: Dynamic Memory Example
	Slide 45: Dynamic Memory Example
	Slide 46: Dynamic Memory Example
	Slide 47: Dynamic Memory Example
	Slide 48: Dynamic Memory Example
	Slide 49: Dynamic Memory Example
	Slide 50: Key Takeaway
	Slide 51: Lecture Outline
	Slide 52: Why would I use new?
	Slide 53: vector Example
	Slide 54: Where is the allocation?
	Slide 55: Where is the deletion?
	Slide 56: Destructors
	Slide 57: Destructor Example
	Slide 58: Default Destructor
	Slide 59: Default Destructor Example
	Slide 60: std::array
	Slide 61: array example

