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❖ How is HW0 going?
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Administrivia

❖ HW0 is due on Friday

▪ Can already setup your docker environment, please do that.

▪ Should have everything you need after this lecture.

❖ Pre-semester survey out today on canvas

▪ For credit, but answers are anonymous

▪ Due Wednesday January 31st at 11:59 pm

❖ HW1 to be released on Friday or Monday

▪ should have everything you need either after Wednesday’s or 
Monday’s lecture
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Lecture Outline

❖ HW0 demo

❖ Pointers

❖ Dynamic memory

❖ std::array
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Lecture Outline

❖ HW0 demo

❖ Pointers

❖ Dynamic memory

❖ std::array
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❖ What does this code print?
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int main(int argc, char** argv) {

  int x {5};

  int y {10};

  int& z {x};  // binds the name "z" to x

  z += 1;

  x += 1;  

  z  = y;  

  z += 1;  

  y += 5;  

  cout << "x: " << x << endl;

  cout << "y: " << y << endl;

  cout << "z: " << z << endl;

  return EXIT_SUCCESS;

}
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Pointers

❖ Variables that store addresses 

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition:  type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address 

• Trying to access that data at that address will treat the data there as 
an int

❖ Pointers can be thought of as references, but you can 
reassign what it refers to.
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int *ptr;

type* name; type *name;

equivalent
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Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:
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int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 595;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2
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Pointers: assigning

❖ There are two ways you can interact with a pointer

❖ Assigning/changing what variable the pointer is 
“referring” to

❖ Assigning/changing the value of the thing it is referring to
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int a = 5930;

int b = 5950;

int *ptr = &a; // ptr refers to a

ptr = &b; // ptr now “refers” to b

int a = 5950;

int *ptr = &a; // ptr refers to a

*ptr = 3333; // *ptr and ‘a’ hold the value 3333
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0x2001 a --

0x2002 b --

0x2003 c --

0x2004 ptr --

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location

Initial values 

are garbage
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0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr --

Pointer Example

11

int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c 10

0x2004 ptr 0x2001

Pointer Example
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int main(int argc, char** argv) {

  int a, b, c;

  int* ptr;   // ptr is a pointer to an int

  a = 5;

  b = 3;

  ptr = &a;

  *ptr = 7;

 c = a + b;

  return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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❖ What does this code print?
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int main(int argc, char** argv) {

  int x {5};

  int y {10};

  int* z {&x};  

  *z += 1;

  x += 1;  

  z  = &y;  

  *z += 1;  

  cout << "x: " << x << endl;

  cout << "y: " << y << endl;

  cout << "z: " << *z << endl;

  return EXIT_SUCCESS;

}
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

x 5

y 10

z

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

x 5

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

x 6

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  

  *z += 1;  

  return EXIT_SUCCESS;

}

x 7

y 10

z 0x7fff…a4

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++

20

int main(int argc, char** argv) {

  int x = 5, y = 10;

  int* z = &x;

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  // sets z to the address of y

  *z += 1;  

  return EXIT_SUCCESS;

}

x 7

y 10

z 0x7fff…a0

Note: Arrow points 
to next instruction.
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Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’t modify what it points to, but you 
can access/modify what it points to by dereferencing

▪ These work the same in C and C++
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int main(int argc, char** argv) {

  int x {5}, y {10};

  int* z {&x};

  *z += 1;  // sets x to 6

   x += 1;  // sets x (and *z) to 7

   z = &y;  // sets z to the address of y

  *z += 1;  // sets y (and *z) to 11

  return EXIT_SUCCESS;

}

x 7

y 11

z 0x7fff…a0

Note: Arrow points 
to next instruction.
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C++ nullptr

❖ C++ can have pointers that refer to nothing by assigning 
pointers the value nullptr

❖ nullptr is a useful indicator to indicate that the pointer 
is currently uninitialized or not in use. 

❖ Trying to dereference or “access the value at” a pointer 
holding nullptr, will guarantee* your program to crash 

22



CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

const and Pointers

❖ Pointers can change data in two different contexts:

1) You can change the value of the pointer

2) You can change the thing the pointer points to 
(via dereference)

❖ const can be used to prevent either/both of these 
behaviors!
▪ const next to pointer name means you can’t change the value of 

the pointer

▪ const next to data type pointed to means you can’t use this 
pointer to change the thing being pointed to

▪ Tip: read variable declaration from right-to-left

23
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const and Pointers

❖ The syntax with pointers is confusing:

24

int main(int argc, char** argv) {

  int x {5};               // int

  const int y {6};         // (const int)

  y++;                     

  const int *z {&y};       // pointer to a (const int)

  *z += 1;                 

  z = nullptr;                     

  int *const w {&x};       // (const pointer) to a (variable int)

  *w += 1;                 

  w = nullptr;                     

  const int *const v {&x}; // (const pointer) to a (const int)

  *v += 1;                 

  v = nullptr;                     

  return EXIT_SUCCESS;

}

constmadness.cc
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Lecture Outline

❖ HW0 demo

❖ Pointers

❖ Dynamic memory

❖ std::array

25
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Stack Example: 

26

#include <iostream>

#include <cstdlib>

int sum(int n) {

  int sum = 0;

  for (int i = 0; i < n; i++) {

    sum += i;

  }

  return sum;

}

int main() {

  int sum = sum(3);

  cout << "sum: " << sum;

  cout << endl;  

  return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

int n;

int sum;

int i;

Stack frame for
sum()
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Stack Example 1: 
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#include <iostream>

#include <cstdlib>

int sum(int n) {

  int sum = 0;

  for (int i = 0; i < n; i++) {

    sum += i;

  }

  return sum;

}

int main() {

  int sum = sum(3);

  cout << "sum: " << sum;

  cout << endl;  

  return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

sum()’s stack frame 
goes away after 
sum() returns.

main()’s stack frame 
is now top of the stack 
and we keep executing 
main()

????
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Stack Example: 

28

#include <iostream>

#include <cstdlib>

int sum(int n) {

  int sum = 0;

  for (int i = 0; i < n; i++) {

    sum += i;

  }

  return sum;

}

int main() {

  int sum = sum(3);

  cout << "sum: " << sum;

  cout << endl;  

  return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for
cout << string

????
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Stack

❖ Grows, but has a static max size
▪ Can find the default size limit with the command ulimit –all

(May be a different command in different shells and/or linux
versions. Works in bash on Ubuntu though)

▪ Can also be found at runtime with getrlimit(3)

❖ Max Size of a stack can be changed
▪ at run time with setrlimit(3)

▪ At compilation time for some systems (not on Linux it seems)

▪ (or at the creation of a thread)

29
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❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings 
can be ignored for now)

30
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string& get_string() {

  string greeting{"hello world!"};

  return greeting;

}

int main(int argc, char** argv) {

  string& s = get_string();

  cout << s << endl;

  return EXIT_SUCCESS;

}
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❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings 
can be ignored for now)

31
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string& get_string() {

  string greeting{"hello world!"};

  return greeting;

}

int main(int argc, char** argv) {

  string& s = get_string();

  cout << s << endl;

  return EXIT_SUCCESS;

}

main()’s stack frame
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❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings 
can be ignored for now)

32
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string& get_string() {

  string greeting{"hello world!"};

  return greeting;

}

int main(int argc, char** argv) {

  string& s = get_string();

  cout << s << endl;

  return EXIT_SUCCESS;

}

main()’s stack frame

get_string()’s stack frame

greeting hello world!



CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings 
can be ignored for now)

33
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string& get_string() {

  string greeting{"hello world!"};

  return greeting;

}

int main(int argc, char** argv) {

  string& s = get_string();

  cout << s << endl;

  return EXIT_SUCCESS;

}

main()’s stack frame

get_string()’s stack frame

greeting hello world!

s
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❖ Does this code compile? If so, what does it print?
If not, what are the compiler errors? (compiler warnings 
can be ignored for now)

34
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string& get_string() {

  string greeting{"hello world!"};

  return greeting;

}

int main(int argc, char** argv) {

  string& s = get_string();

  cout << s << endl;

  return EXIT_SUCCESS;

}

main()’s stack frame

????????

s



CIT 5950, Spring 2024L02: pointers, dynamic memory, RAIIUniversity of Pennsylvania

Memory Allocation

❖ So far, we have seen two kinds of memory allocation:

int counter = 0;    // global var

int main() {

  counter++;

  cout << "count = " << counter;

  cout << endl;

  return 0;

}

int foo(int a) {

  int x = a + 1;     // local var

  return x;

}

int main() {

  int y = foo(10);   // local var

  cout << "y = " << y << endl;

  return 0;

}▪ counter is statically-allocated

• Allocated when program is loaded

• Deallocated when program exits
▪ a, x, y are automatically-

allocated

• Allocated when function is called

• Deallocated when function returns

35
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What is Dynamic Memory Allocation?

❖ We want Dynamic Memory Allocation

▪ Dynamic means “at run-time”

▪ The compiler and the programmer don’t have enough information 
to make a final decision on how much to allocate or how long the 
data “should live”.

❖ Dynamic memory can be of variable size:

▪ Your program explicitly requests more memory at run time

▪ The language allocates it at runtime, probably with help of the OS

❖ Dynamically allocated memory persists until either:

▪ A garbage collector collects it (automatic memory management)

▪ Your code explicitly deallocates it (manual memory management)
36
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The Heap

❖ The Heap is a large pool of available memory to use for 
Dynamic allocation

❖ This pool of memory is kept track of with a small data 
structure indicating which portions have been allocated, 
and which portions are currently available.

37
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C++ keyword: new

❖ C++ keyword new is used to allocate space on the heap.

▪ We specify a type and initial value which will be constructed 
and/or initialized for us.

38

string *get_string() {

  string *greeting = new string("hello world!");

  return greeting;

}

int main(int argc, char** argv) {

  string *s = get_string();

  cout << s << endl;

  return EXIT_SUCCESS;

}
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Dynamic Memory Deallocation

❖ Dynamic memory has a dynamic “lifetime”

▪ Stack data is deallocated when the function returns

▪ Heap data is deallocated when our program deallocates it

❖ In high level languages like Java or Python, garbage 
collection is used to deallocate data

▪ This has significant overhead for larger programs

❖ C requires you to manually manage memory

▪ And so is easy to screw up

❖ C++ and Rust have RAII (more on this later this lecture)

▪ Harder to screw-up, and much less overhead

39
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Dynamic Memory Deallocation

❖ When is the string we allocate deallocated?

40

string *get_string() {

  string *greeting = new string("hello world!");

  return greeting;

}

int main(int argc, char** argv) {

  string *s = get_string();

  cout << *s << endl;

  return EXIT_SUCCESS;

}
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C++ keyword: delete

❖ C++ keyword delete is used to deallocate space on the 
heap.

41

string *get_string() {

  string *greeting = new string("hello world!");

  return greeting;

}

int main(int argc, char** argv) {

  string *s = get_string();

  cout << *s << endl;

  delete s;

  return EXIT_SUCCESS;

}
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The Heap

❖ The Heap is a large pool of available memory to use for 
Dynamic allocation

❖ This pool of memory is kept track of with a small data 
structure indicating which portions have been allocated, 
and which portions are currently available.

❖ new:

▪ searches for a large enough unused block of memory 

▪ marks the memory as allocated.

▪ Returns a pointer to the beginning of that memory

❖ delete:

▪ Takes in a pointer to a previously allocated address

▪ Marks the memory as free to use.

42

KEY TAKEAWAY: allocating on the 
heap is not free, it has overhead
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Free Lists

❖ One way that allocation can be implemented is by 
maintaining an implicit list of the space available and 
space allocated.

❖ Before each chunk of allocated/free memory, we’ll also 
have this metadata:

43

// this is simplified

// not what malloc/new really does

struct alloc_info {

  alloc_info* prev;

  alloc_info* next;

  bool allocated;

  size_t size;

};
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❖ free_list ->

Dynamic Memory Example

44

int main() {

  short* ptr = new short(16);

  double* ptr2 = new double(3.14);

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header

{

 NULL,

 NULL,

 false,

 1024

}

This diagram is 

not to scale

The metadata is at 

the beginning of the 

chunk of memory
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❖ free_list

Dynamic Memory Example

45

int main() {

  short* ptr = new short(16);

  double* ptr2 = new double(3.14);

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 NULL,

 false,

 1020

}

"new" 

return 

value

Free chunks can 

be split to 

allocate blocks of 

specific size

new gets a 

pointer to just 

after the 

metadata

free_list

points to first 

free chunk
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❖ free_list

Dynamic Memory Example

46

int main() {

  short* ptr = new short(16);

  double* ptr2 = new double(3.14);

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header header header

{

 NULL,

 0x…,

 true,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

"new" 

return 

value

{

 0x…,

 NULL,

 false,

 996

}
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❖ free_list

Dynamic Memory Example

47

int main() {

  short* ptr = new short(16);

  double* ptr2 = new double(3.14);

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 true,

 24

}

{

 0x…,

 NULL,

 false,

 996

}
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❖ free_list

Dynamic Memory Example

48

int main() {

  short* ptr = new short(16);

  double* ptr2 = new double(3.14);

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header header header

{

 NULL,

 0x…,

 false,

 4

}

{

 0x…,

 0x…,

 false,

 24

}

{

 0x…,

 NULL,

 false,

 996

}
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❖ free_list

Dynamic Memory Example

49

int main() {

  short* ptr = new short(16);

  double* ptr2 = new double(3.14);

  ...           // do stuff with ptr

  delete ptr;

  delete ptr2;

}

header

{

 NULL,

 0x…,

 false,

 1024

}

Once a block has been 

freed, we can try to 

“coalesce” it with 

their neighbors

The first delete 

couldn’t be coalesced, 

only neighbor was 

allocated
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Key Takeaway

❖ Dynamic memory allocation is not free and can have 
considerable overhead

❖ Performant C++ code minimizes the number of dynamic 
allocations and/or custom allocators

50
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Lecture Outline

❖ HW0 demo

❖ Pointers

❖ Dynamic memory

❖ std::vec allocations and std::array

51
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Why would I use new?

❖ In “real” or “modern” C++ code, you would not explicitly 
use new or delete yourself.

❖ In most cases, a vector or other data structure can be 
used, and you never have to allocate memory yourself

❖ whenever you are using objects from the C++ standard 
library (like vector), those objects will do memory 
allocation.

52
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vector Example

53

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

  vector<int> vec;

  cout << "vec.push_back " << 3 << endl;

  vec.push_back(3);

  cout << "vec.push_back " << 4 << endl;

  vec.push_back(4);

  cout << "vec.push_back " << 5 << endl;

  vec.push_back(5);

  cout << "vec[0]" << endl << vec,at(0) << endl;

  cout << "vec[2]" << endl << vec.at(2) << endl;

  return EXIT_SUCCESS;

}

Construct empty vector

Add elements to

end of vector
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Where is the allocation?

54

3 4 4

Note:

- Capacity doubles each time capacity is reached

3vec

Capacity = 1

3vec 4

Capacity = 2

3vec 4

Capacity = 4

5
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Where is the deletion?

❖ This code has allocation, where is the deallocation?

55

#include <iostream>

#include <vector>

using namespace std;

int main(int argc, char** argv) {

  vector<int> vec;

  cout << "vec.push_back " << 3 << endl;

  vec.push_back(3);

  cout << "vec.push_back " << 4 << endl;

  vec.push_back(4);

  cout << "vec.push_back " << 5 << endl;

  vec.push_back(5);

  cout << "vec[0]" << endl << vec,at(0) << endl;

  cout << "vec[2]" << endl << vec.at(2) << endl;

  return EXIT_SUCCESS;

}
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Destructors

❖ C++ has the notion of a destructor (dtor)

▪ Invoked automatically when a class instance is deleted, goes out 
of scope, etc. (even via exceptions or other causes!)

▪ Place to put your cleanup code – free any dynamic storage or 
other resources owned by the object

▪ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

56

MyObj::~MyObj() {   // destructor

  // do any cleanup needed when a "MyObj" object goes away

  // (nothing to do here since we have no dynamic resources)

}

tilde No parameters

When a destructor is invoked:

1. run destructor body

2. Call destructor of any data members

More on RAII in a later lecture
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Destructor Example

57

class Integer {

 public:

  Integer(int val) : val_(new int(val)) {   // Constructor

  }

  ~Integer() { delete val_; }   // Destructor

  int get_value() { return *val_; }   // inline member function

 private:

  int* val_;  // data member

};  // class Integer

Integer.h

#include "Integer.h“

#include <iostream>

int main(int argc, char** argv) {

  Integer best_course{5950};

  cout << best_course.get_value() << endl; 

  return EXIT_SUCCESS;

}

Without destructor, the 

memory wouldn’t be freed

Destruct the object when it falls 

out of scope (when we return)

Allocates memory in the 

constructor
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Default Destructor

❖ 9 out of ten times, most objects do not need to create an 
explicit destructor.

❖ Destructors can be specified to be a default the C++ 
generates for you

❖ The default destructor just runs the destructor of any data 
member (fields) the object has.

▪ So, if your custom object has a vector or a map, then those data 
structures will automatically get destructed/”cleaned-up” 

58
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Default Destructor Example

59

#ifndef POINT_HPP_

#define POINT_HPP_

class Point {

 public:

  Point(int x, int y);     // constructor

  ~Point() = default;

  int get_x() { return x_; }     // inline member function

  int get_y() { return y_; }     // inline member function

  double Distance(Point p);      // member function

  void SetLocation(int x, int y); // member function

 private:

  int x_;  // data member

  int y_;  // data member

};  // class Point

#endif  // POINT_HPP_

Default destructor since we 
don’t do any allocation in Point
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std::array

❖ Similar to vector, we have array

▪ Both contain a sequence of data that we can index into

❖ Main differences: the size

▪ Vector is resizable (grows to whatever length we need)

▪ Array is a static size (size is determined at compile time)

❖ Main differences: the allocation

▪ To support being resizable, vector uses a lot of dynamic allocation

▪ Array does not use any dynamic allocation

60
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array example

61

int main(int argc, char* argv[]) {

  array<int, 3> arr {6, 5, 4};

  // arr.push_back(3); push_back does not exist!

  

  cout << arr.size() << endl; // prints 3

  cout << arr.at(2) << endl;  // prints 4  

  // iterates through all elements and prints them

  for (const auto& element : arr) {

     cout << element << endl;

  } 

  return EXIT_SUCCESS;

}
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