
CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Posix & Buffering
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

CV Kunjeti Lang Qin

Felix Sun Sean Chuang

Heyi Liu Serena Chen

Kevin Bernat Yuna Shao

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

❖ Any questions on HW0?

2

pollev.com/tqm

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Administrivia

❖ HW0 is due on Friday

▪ Can already setup your docker environment, please do that.

▪ I have office hours later today and on Friday

❖ Pre-semester survey out today on canvas

▪ For credit, but answers are anonymous

▪ Due TONIGHT Wednesday January 31st at 11:59 pm

❖ HW1 to be released on Friday or Monday

▪ should have everything you need either after Wednesday’s or
Monday’s lecture

3

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Lecture Outline

4

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ C arrays and C++ Arrays

❖ POSIX I/O

❖ Locality

5

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Hardware

Firmware / Drivers

Operating System / Kernel

Software / Applications

Libraries, APIs, System Calls

Algorithms

Today, we are here!

Math / Logic

Remember This?

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are
portable

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs have permission to access which files,
memory locations, pixels on the screen, etc. and when

7

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

8

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
…

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

System Call Trace (high-level view)

9

OS
(trusted)

HW (trusted)

User Process
(untrusted)A CPU (thread of

execution) is running user-
level code in Process A;

the CPU is set to
unprivileged mode.

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

User Process
(untrusted)

System Call Trace (high-level view)

10

Code in Process invokes a
system call; the hardware

then sets the CPU to
privileged mode and traps
into the OS, which invokes

the appropriate system
call handler.

sy
st

em
 c

al
l

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

11

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

User Process
(untrusted)

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

12

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

User Process
(untrusted)

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

OS
(trusted)

HW (trusted)

System Call Trace (high-level view)

13

User Process
(untrusted)The process continues

executing whatever
code is next after the

system call invocation.

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one
of several places:

• In your program’s code

• In glibc, a shared library containing
the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

14

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 1

❖ Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel

▪ e.g. strcmp() from stdio.h

▪ There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

• But after symbols are resolved,
invoking glibc routines is basically
as fast as a function call within your
program itself!

15

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled
by glibc, but they in turn
invoke Linux system calls

▪ e.g. POSIX wrappers around Linux
syscalls

• POSIX readdir() invokes the
underlying Linux readdir()

▪ e.g. C stdio functions that read
and write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
close(), write(), etc.

16

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

“Library calls” on x86/Linux: Option 3

❖ Your program can choose to
directly invoke Linux system calls
as well

▪ Nothing is forcing you to link with
glibc and use it

▪ But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

17

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

A System Call Analogy

❖ The OS is a very wise and knowledgeable wizard

▪ It has many dangerous and powerful artifacts, but it doesn’t trust
others to use them. Will perform tasks on request.

❖ If a civilian wants to access a “magical” feature, they must
fill out a request to the wizard.

▪ It takes some time for the wizard to start processing the request,
they must ensure they do everything safely

▪ The wizard will handle the powerful artifacts themselves. The user
WILL NOT TOUCH ANYTHING.

▪ Wizard will take a second to analyze results and put away artifacts
before giving results back to the user.

18

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2: Linux system calls

▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3: glibc/libc library functions

▪ man 3 intro

❖ The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

19

http://www.kernel.org/

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ C arrays and C++ Arrays

❖ POSIX I/O

❖ Locality

20

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

std::array

❖ Similar to vector, we have array

▪ Both contain a sequence of data that we can index into

❖ Main differences: the size

▪ Vector is resizable (grows to whatever length we need)

▪ Array is a static size (size is determined at compile time)

❖ Main differences: the allocation

▪ To support being resizable, vector uses a lot of dynamic allocation

▪ Array does not use any dynamic allocation

21

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

array example

22

int main(int argc, char* argv[]) {

 array<int, 3> arr {6, 5, 4};

 // arr.push_back(3); push_back does not exist!

 cout << arr.size() << endl; // prints 3

 cout << arr.at(2) << endl; // prints 4

 // iterates through all elements and prints them

 for (const auto& element : arr) {

 cout << element << endl;

 }

 return EXIT_SUCCESS;

}

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Arrays in C

❖ Definition: type name[size]

▪ Allocates size*sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size
(e.g. int scores[175];)

▪ Initially, array values are “garbage”

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable
or hard-code it in

23

type name[size]

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Using C Arrays

❖ Initialization: type name[size] = {val0,…,valN};
▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”
▪ name[index] specifies an element of the array and can be

used as an assignment target or as a value in an expression

▪ Array name (by itself) produces the address of the start of the
array

• Cannot be assigned to / changed

24

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

Optional when initializing

No IndexOutOfBounds

Hope for segfault

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Arrays as Parameters

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

▪ Arrays do not know their own size

25

int sumAll(int a[]) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

Passes in address of start of array

int sumAll(int* a) {

 int i, sum = 0;

 for (i = 0; i < ...???

}

Equivalent

❖ Note: Array syntax works on pointers

▪ E.g. ptr[3] = ...;

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Solution: Pass Size as Parameter

26

int sumAll(int* a, int size) {

 int i, sum = 0;

 for (i = 0; i < size; i++) {

 sum += a[i];

 }

 return sum;

}

❖ Standard idiom in C programs

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

27

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

for (int i = 0; i < size; i++) {

 sum += ptr[i];

}

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

28

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

29

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

end

1 past the end of the array!

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

30

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 0

ptr

end

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

31

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 3

ptr

end

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

32

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 8

ptr

end

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Pointer Arithmetic

❖ We can do arithmetic on addresses to iterate through
arrays.

33

int a[] = {0, 3, 5, 9};

int size = 4;

int sum = 0;

int* ptr = a; // &(a[0])

int* end = ptr + size;

for (; ptr != end; ptr++) {

 sum += *ptr;

}

0 3 5 9a

size 4

sum 17

ptr

end

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C++ Arrays

❖ C arrays are considered dangerous, and not safe to use

▪ Length is not attached to the array

▪ There is no bounds checking

▪ Arrays are not readable code
Consider this CIS 5480 Example:
What do you think “commands”
represents?

❖ In our code, we will use C++ Arrays instead, but we need
to call C code that expects C arrays…

34

// example from CIS 5480

struct parsed_command {

 int num_commands;

 char*** commands;

};

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C++ Arrays -> C array

❖ Can use .data() and .size() to convert to a C array

35

int sumAll(int* a, int size) {

 int i, sum = 0;

 for (i = 0; i < size; i++) {

 sum += a[i];

 }

 return sum;

}

int main(){

 array<int, 1024> arr{};

 sumAll(arr.data(), arr.size());

}

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ C arrays and C++ Arrays

❖ POSIX I/O

❖ Locality

36

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Aside: File I/O & Disk

❖ File System:

▪ Provides long term storage of data:

• Persist after a program terminates

• Persists after computer turns off

▪ Data is organized into files & directories

• A directory is pretty much a “folder”

▪ Interaction with the file system is
handled by the operating system
and hardware. (To make sure a
program doesn’t put the entire
file system into an invalid state)

37

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

C Standard Library I/O

❖ In 5930, you’ve seen the C standard library to access files
▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

❖ These are convenient and portable

▪ They are buffered*

▪ They are implemented using lower-level OS calls

38

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

From C to POSIX

❖ Most UNIX-en support a common set of lower-level file
access APIs: POSIX – Portable Operating System Interface
▪ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from the C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient

▪ C stdlib doesn’t provide everything POSIX does

• You will have to use these to read file system directories and for
network I/O, so we might as well learn them now

39

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

• Similar to fopen()

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

• Defaults: 0 is stdin, 1 is stdout, 2 is stderr

– -1 indicates error

40

#include <fcntl.h> // for open()

#include <unistd.h> // for close()

 ...

 int fd = open("foo.txt", O_RDONLY);

 if (fd == -1) {

 perror("open failed");

 exit(EXIT_FAILURE);

 }

 ...

 close(fd);

Used to identify

a file w/ the OS

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error (and sets errno)

• Advances forward in the file by number
of bytes read

▪ There are some surprising error modes (check errno)

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!!)

• And many others…

41

ssize_t read(int fd, void* buf, size_t count);

Number of bytes

Defined

 in

errno.h

Stores read

result in buf

errno

==

EINTR

Return Value

0-1 > 0

read()

other

errno

==

count

<

count

You’re

done!

Keep

reading

Error msg,

exit

Try

again!

eof

signed

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

42

array<char, n> buf {}; // buffer

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

 result = read(fd, ______, bytes_left);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened,

 // so return an error result

 }

 // EINTR happened,

 // so do nothing and try again

 continue;

 }

 bytes_left -= result;

}

A. buf.data()

B. buf.data() + bytes_left

C. buf.data() + bytes_left - n

D. buf.data() + n - bytes_left

E. We’re lost…Keyword that jumps

to beginning of loop

pollev.com/tqm

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

A. buf.data()

B. buf.data() + bytes_left

C. buf.data() + bytes_left - n

D. buf.data() + n - bytes_left

E. We’re lost…

One way to read() 𝑛 bytes

❖ Let’s say we want to read ‘n’ bytes. Which is the correct
completion of the blank below?

43

array<char, n> buf {}; // buffer

int bytes_left = n;

int result; // result of read()

while (bytes_left > 0) {

 result = read(fd, ______, bytes_left);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened,

 // so return an error result

 }

 // EINTR happened,

 // so do nothing and try again

 continue;

 }

 bytes_left -= result;

}

Keyword that jumps

to beginning of loop

buf

if first read only reads n/4 bytes

Want to start reading here

buf + n/4

bytes_left = n * 3/4

= buf + n - bytes_left

pollev.com/tqm

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

One method to read() 𝑛 bytes

44

int fd = open(filename, O_RDONLY);

array<char, 1024> buf {}; // buffer of appropriate size

int bytes_left = 1024;

int result;

while (bytes_left > 0) {

 result = read(fd, buf.data() + (1024 - bytes_left), bytes_left);

 if (result == -1) {

 if (errno != EINTR) {

 // a real error happened, so exit the program

 // print out some error message to cerr

 exit(EXIT_FAILURE);

 }

 // EINTR happened, so do nothing and try again

 continue;

 } else if (result == 0) {

 // EOF reached, so stop reading

 break;

 }

 bytes_left -= result;

}

close(fd);

To prevent an infinite loop

Keyword that jumps to beginning of loop

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Other Low-Level Functions

❖ Read man pages to learn about:
▪ write() – write data

• #include <unistd.h>

▪ lseek() – reposition and/or get file offset

• #include <unistd.h>

▪ opendir(), readdir(), closedir() – deal with directory
listings

• Make sure you read the section 3 version (e.g. man 3 opendir)

• #include <dirent.h>

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

45

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

HW1 Overview

❖ In HW1, you will be implementing two file readers

❖ SimpleFileReader

▪ A relatively simple C++ class that acts as a wrapper around POSIX

❖ BufferedFileReader

▪ Similar to SimpleFileReader but maintains an internal buffer for
improver performance due to locality

▪ Also implements token parsing

46

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Lecture Outline

❖ The OS

❖ C arrays and C++ Arrays

❖ POSIX I/O

❖ Locality

47

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Locality

❖ A major factor in performance is the locality of data

▪ data that is “closer” is quicker to fetch

❖ Have you seen this?

▪ More on this when
talking about memory
(Jeff Dean from LADIS ’09)

❖ https://colin-
scott.github.io/personal_website/research/interactive_lat
ency.html

48

Numbers are out of date, but

order of magnitude is same

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Buffering

❖ By default, C stdio uses buffering on top of POSIX:

▪ When one reads with fread(), a lot of data is copied into a
buffer allocated by stdio inside your process’ address space

▪ Next time you read data, it is retrieved from the buffer

• This avoids having to invoke a system call again

▪ As some point, the buffer will be “refreshed”:

• When you process everything in the buffer (often 1024 or 4096 bytes)

▪ Similar thing happens when you write to a file

49

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Buffering Example

50

int main(int argc, char** argv) {

 array<char,2> buf {};

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(buf.data(), sizeof(char), 1, fin);

 fread(buf.data()+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Buffering Example

51

int main(int argc, char** argv) {

 array<char,2> buf {};

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(buf.data(), sizeof(char), 1, fin);

 fread(buf.data()+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

……

h i

buf

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

h i

Read as much as

you can from the

file

Copy out what

was requested

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Buffering Example

52

int main(int argc, char** argv) {

 array<char,2> buf {};

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(buf.data(), sizeof(char), 1, fin);

 fread(buf.data()+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

Get next char

from buffer

No need to go to file!

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Buffering Example

53

int main(int argc, char** argv) {

 array<char,2> buf {};

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(buf.data(), sizeof(char), 1, fin);

 fread(buf.data()+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

}

C stdio buffer

hi.txt (disk/OS)

h i ……

h i

buf

h i

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Buffering Example

54

int main(int argc, char** argv) {

 array<char,2> buf {};

 FILE* fin = fopen("hi.txt", "rb");

 // read "hi" one char at a time

 fread(buf.data(), sizeof(char), 1, fin);

 fread(buf.data()+1, sizeof(char), 1, fin);

 fclose(fin);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

NOTE: using fopen/fread/fclose just for example.
They will NOT be used in HW1 or in the rest of the class

Arrow signifies what
will be executed next

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

GAP SLIDE

❖ Helps clearly indicate we are going on to a new example

55

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

No Buffering Example

56

int main(int argc, char** argv) {

 array<char,2> buf {};

 int file = open("hi.txt", O_RDONLY);

 // read "hi" one char at a time

 read(file, buf.data(), 1);

 read(file, buf.data()+1, 1);

 close(file);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

Arrow signifies what
will be executed next

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

No Buffering Example

57

int main(int argc, char** argv) {

 array<char,2> buf {};

 int file = open("hi.txt", O_RDONLY);

 // read "hi" one char at a time

 read(file, buf.data(), 1);

 read(file, buf.data()+1, 1);

 close(file);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h

Arrow signifies what
will be executed next

Read ‘h’ from OS

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

No Buffering Example

58

int main(int argc, char** argv) {

 array<char,2> buf {};

 int file = open("hi.txt", O_RDONLY);

 // read "hi" one char at a time

 read(file, buf.data(), 1);

 read(file, buf.data()+1, 1);

 close(file);

 return EXIT_SUCCESS;

} hi.txt (disk/OS)

h i

buf

h i

Arrow signifies what
will be executed next

Read ‘i’ from OS

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not
mean the data has actually been written

❖ Performance – buffering takes time
▪ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth

▪ Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

❖ When is buffering faster? Slower?

59

Many small writes

Or only writing a little

Large writes

	Default Section
	Slide 1: Posix & Buffering Computer Systems Programming, Spring 2024
	Slide 2
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Lecture Outline
	Slide 6
	Slide 7: What’s an OS?
	Slide 8: OS: Abstraction Provider
	Slide 9: System Call Trace (high-level view)
	Slide 10: System Call Trace (high-level view)
	Slide 11: System Call Trace (high-level view)
	Slide 12: System Call Trace (high-level view)
	Slide 13: System Call Trace (high-level view)
	Slide 14: “Library calls” on x86/Linux
	Slide 15: “Library calls” on x86/Linux: Option 1
	Slide 16: “Library calls” on x86/Linux: Option 2
	Slide 17: “Library calls” on x86/Linux: Option 3
	Slide 18: A System Call Analogy
	Slide 19: If You’re Curious
	Slide 20: Lecture Outline
	Slide 21: std::array
	Slide 22: array example
	Slide 23: Arrays in C
	Slide 24: Using C Arrays
	Slide 25: C Arrays as Parameters
	Slide 26: Solution: Pass Size as Parameter
	Slide 27: C Pointer Arithmetic
	Slide 28: C Pointer Arithmetic
	Slide 29: C Pointer Arithmetic
	Slide 30: C Pointer Arithmetic
	Slide 31: C Pointer Arithmetic
	Slide 32: C Pointer Arithmetic
	Slide 33: C Pointer Arithmetic
	Slide 34: C++ Arrays
	Slide 35: C++ Arrays -> C array
	Slide 36: Lecture Outline
	Slide 37: Aside: File I/O & Disk
	Slide 38: C Standard Library I/O
	Slide 39: From C to POSIX
	Slide 40: open()/close()
	Slide 41: Reading from a File
	Slide 42: One way to read() n bytes
	Slide 43: One way to read() n bytes
	Slide 44: One method to read() n bytes
	Slide 45: Other Low-Level Functions
	Slide 46: HW1 Overview
	Slide 47: Lecture Outline
	Slide 48: Locality
	Slide 49: Buffering
	Slide 50: Buffering Example
	Slide 51: Buffering Example
	Slide 52: Buffering Example
	Slide 53: Buffering Example
	Slide 54: Buffering Example
	Slide 55: GAP SLIDE
	Slide 56: No Buffering Example
	Slide 57: No Buffering Example
	Slide 58: No Buffering Example
	Slide 59: Why NOT Buffer?

