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❖ Any questions?
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Administrivia

❖ HW1 is due a week from Friday

▪ Should be out later today

❖ Course schedule about to change a lot

▪ Topics are the same

▪ Ordering and Homework assignments will not be
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Lecture Outline

❖ Processes

❖ Fork()

❖ Interrupts
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Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources
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OS kernel [protected]

Stack
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Read/Write Segments
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Shared Libraries
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* This isn’t quite true

more in a future lecture
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Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors, 
CMOS, gates, etc.

❖ Once we got to programming, our computer looks 
something like:

❖ This model is still useful, and can be
used in many settings
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Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources
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OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of 

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between 
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly
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Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices
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Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking) 
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution
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Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)
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Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate 
process

• Scheduling of processors onto 
cores done by kernel

▪ This is called “Parallelism”
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Context Switching

❖ Processes are managed by a shared chunk of memory-
resident OS code called the kernel

▪ Important: the kernel is not a separate process, but rather runs 
as part of some existing process.

❖ Control flow passes from one process to another via a 
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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OS: The Scheduler

❖ When switching between processes, the OS will run 

some kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling processes

▪ Choosing which one to run

▪ Deciding how long to run it
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Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide 

what runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of

time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more...

❖ More on this later. For now: think of scheduling as 
non-deterministic, details handled by the OS.
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Any questions so far?

❖ What I just went through was the big picture of processes. 
Many details left, some will be gone over in future 
lectures

❖ Any questions, comments or concerns so far?

18
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Lecture Outline

❖ Processes

❖ Fork()

❖ Interrupts
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Terminating Processes

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next 
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status);

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an 
integer value from the main routine

❖ exit is called once but never returns.
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Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the 
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the 
parent

▪ Returns a pid_t which is an integer type.

21

pid_t fork();
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fork() and Address Spaces

❖ Fork causes the OS
to clone the 
address space
▪ The copies of the 

memory segments are 
(nearly) identical

▪ The new process has 
copies of the parent’s 
data, stack-allocated 
variables, open file 
descriptors, etc.
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OS kernel [protected]
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0

23
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0
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fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return 
from fork

• Parent receives child’s pid

• Child receives a 0
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"simple" fork() example

❖ What does this print?

26

fork();

printf("Hello!\n");
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"simple" fork() example

❖ What does this print?
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int x = 3;

fork();

x++;

printf("%d\n", x);
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fork() example

28

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}
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fork() example

29

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Parent Process (PID = X) Child Process  (PID = Y)
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fork() example
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pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Parent Process (PID = X) Child Process  (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

  printf("Child\n");

} else {

  printf("Parent\n");

}

Prints "Parent" Prints "Child"Which prints first?
Non-deterministic
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Another fork() example
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pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);
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Another fork() example
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pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process  (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);



CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Another fork() example
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pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process  (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

  x = 3800; 

} else {

  x = 2400;

}

printf("%d\n", x);

fork_ret = Y fork_ret = 0

Always prints "2400" Always prints "3800"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!
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Lecture Outline

❖ Processes

❖ Fork()

❖ Interrupts

34
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Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes 
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time
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The BRp instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. BRp

❖ B.   ADD

❖ C. SUB

❖ D. JMP

❖ E. I’m not sure

36

CONST R0, #5

 CONST R1, #2

 CONST R2, #0

LOOP ADD R2, R2, #1

 SUB R0, R0, R1

 BRp LOOP

END JMP #-1

pollev.com/tqm
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Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient  for a useful system: 
Difficult to react to changes in system state 

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”
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Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts 

• Change in control flow in response to a system event 
(i.e.,  change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software 
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Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in 
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next
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0
1

2
...

n-1

Interrupt Tables

❖ Each type of event has a 
unique number k

❖ k = index into table 
(a.k.a. interrupt vector)

❖ Handler k is called each time 
interrupt k occurs

Interrupt
Table

Code for  
interrupt handler 0

Code for 
interrupt handler 1

Code for
interrupt handler 2

Code for 
interrupt handler n-1

...

Interrupt
Numbres
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Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk
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Synchronous Interrupts
❖ Caused by events that occur as a result of executing an 

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable 

• Examples: page faults (recoverable), protection faults 
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t 

fully agreed upon. Many people may use these 

interchangeably
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