
CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Processes
Computer Systems Programming, Spring 2024

Instructor: Travis McGaha

TAs:

CV Kunjeti Lang Qin

Felix Sun Sean Chuang

Heyi Liu Serena Chen

Kevin Bernat Yuna Shao

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

❖ Any questions?

2

pollev.com/tqm

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Administrivia

❖ HW1 is due a week from Friday

▪ Should be out later today

❖ Course schedule about to change a lot

▪ Topics are the same

▪ Ordering and Homework assignments will not be

3

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Lecture Outline

❖ Processes

❖ Fork()

❖ Interrupts

4

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Definition: Process

❖ Definition: An instance of a program
that is being executed
(or is ready for execution)

❖ Consists of:

▪ Memory (code, heap, stack, etc)

▪ Registers used to manage execution
(stack pointer, program counter, ...)

▪ Other resources

5

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segments
.data, .bss

Shared Libraries

Read-Only Segments
.text, .rodata

SP

IP

* This isn’t quite true

more in a future lecture

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Computers as we know them now

❖ In CIS 2400, you learned about hardware, transistors,
CMOS, gates, etc.

❖ Once we got to programming, our computer looks
something like:

❖ This model is still useful, and can be
used in many settings

6

Computer

Operating System

Process

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Multiple Processes

❖ Computers run multiple processes “at the same time”

❖ One or more processes for each
of the programs on your computer

❖ Each process has its own…

▪ Memory space

▪ Registers

▪ Resources

7

Computer

Operating System

P1 P2 P3 Pn…

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

OS: Protection System

❖ OS isolates process from each other
▪ Each process seems to have exclusive use of

memory and the processor.

• This is an illusion

• More on Memory when we talk about virtual
memory later in the course

▪ OS permits controlled sharing between
processes

• E.g. through files, the network, etc.

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

8

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(u

n
tr

u
st

ed
)

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users

• Web browsers, email clients, editors, …

▪ Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved (multitasking)
▪ Address spaces managed by virtual memory system (later in course)
▪ Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Multiprocessing: The (Traditional) Reality

1. Save current registers in memory

2. Schedule next process for execution

3. Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Multiprocessing: The (Modern) Reality

❖ Multicore processors

▪ Multiple CPUs on single chip

▪ Share memory

▪ Each can execute a separate
process

• Scheduling of processors onto
cores done by kernel

▪ This is called “Parallelism”

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

…

CPU

Registers

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Context Switching

❖ Processes are managed by a shared chunk of memory-
resident OS code called the kernel

▪ Important: the kernel is not a separate process, but rather runs
as part of some existing process.

❖ Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

OS: The Scheduler

❖ When switching between processes, the OS will run

some kernel code called the “Scheduler”

❖ The scheduler runs when a process:

▪ starts (“arrives to be scheduled”),

▪ Finishes

▪ Blocks (e.g., waiting on something, usually some form of I/O)

▪ Has run for a certain amount of time

❖ It is responsible for scheduling processes

▪ Choosing which one to run

▪ Deciding how long to run it

16

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Scheduler Considerations

❖ The scheduler has a scheduling algorithm to decide

what runs next.

❖ Algorithms are designed to consider many factors:

▪ Fairness: Every program gets to run

▪ Liveness: That “something” will eventually happen

▪ Throughput: Number of “tasks” completed over an interval of

time

▪ Wait time: Average time a “task” is “alive” but not running

▪ A lot more...

❖ More on this later. For now: think of scheduling as
non-deterministic, details handled by the OS.

17

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Any questions so far?

❖ What I just went through was the big picture of processes.
Many details left, some will be gone over in future
lectures

❖ Any questions, comments or concerns so far?

18

pollev.com/tqm

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Lecture Outline

❖ Processes

❖ Fork()

❖ Interrupts

19

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Terminating Processes

❖ Process becomes terminated for one of three reasons:

▪ Receiving a signal whose default action is to terminate (next
lecture)

▪ Returning from the main routine

▪ Calling the exit function

❖ void exit(int status);

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

▪ Another way to explicitly set the exit status is to return an
integer value from the main routine

❖ exit is called once but never returns.

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Creating New Processes

❖

▪ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)

• *almost everything

▪ The new process has a separate virtual address space from the
parent

▪ Returns a pid_t which is an integer type.

21

pid_t fork();

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

fork() and Address Spaces

❖ Fork causes the OS
to clone the
address space
▪ The copies of the

memory segments are
(nearly) identical

▪ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

22

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()
PARENT CHILD

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

23

parent

OS

fork()

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

24

parent child

OS

clone

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return
from fork

• Parent receives child’s pid

• Child receives a 0

25

parent child

OS

child pid 0

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

26

fork();

printf("Hello!\n");

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

"simple" fork() example

❖ What does this print?

27

int x = 3;

fork();

x++;

printf("%d\n", x);

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

fork() example

28

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

fork() example

29

fork()

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Parent Process (PID = X) Child Process (PID = Y)

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

fork() example

30

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Parent Process (PID = X) Child Process (PID = Y)

fork_ret = Y fork_ret = 0

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

 printf("Child\n");

} else {

 printf("Parent\n");

}

Prints "Parent" Prints "Child"Which prints first?
Non-deterministic

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Another fork() example

31

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Another fork() example

32

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Another fork() example

33

pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork()

Parent Process (PID = X) Child Process (PID = Y)
pid_t fork_ret = fork();

int x;

if (fork_ret == 0) {

 x = 3800;

} else {

 x = 2400;

}

printf("%d\n", x);

fork_ret = Y fork_ret = 0

Always prints "2400" Always prints "3800"

Reminder: Processes have their own address space

(and thus, copies of their own variables)

Order is still nondeterministic!!

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Lecture Outline

❖ Processes

❖ Fork()

❖ Interrupts

34

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

The BRp instruction is being
executed for the first time,
which instruction is executed
next?

❖ A. BRp

❖ B. ADD

❖ C. SUB

❖ D. JMP

❖ E. I’m not sure

36

CONST R0, #5

 CONST R1, #2

 CONST R2, #0

LOOP ADD R2, R2, #1

 SUB R0, R0, R1

 BRp LOOP

END JMP #-1

pollev.com/tqm

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Altering the Control Flow

❖ Up to now: two mechanisms for changing control flow:

▪ Jumps and branches

▪ Call and return

React to changes in program state

❖ Insufficient for a useful system:
Difficult to react to changes in system state

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

❖ System needs mechanisms for “exceptional control flow”

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms

▪ 1. Hardware Interrupts

• Change in control flow in response to a system event
(i.e., change in system state)

• Implemented using combination of hardware and OS software

❖ Higher level mechanisms

▪ 2. Process context switch

• Implemented by OS software and hardware timer

▪ 3. Signals

• Implemented by OS software

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Interrupts

❖ An Interrupt is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

0
1

2
...

n-1

Interrupt Tables

❖ Each type of event has a
unique number k

❖ k = index into table
(a.k.a. interrupt vector)

❖ Handler k is called each time
interrupt k occurs

Interrupt
Table

Code for
interrupt handler 0

Code for
interrupt handler 1

Code for
interrupt handler 2

Code for
interrupt handler n-1

...

Interrupt
Numbres

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Asynchronous Interrupts

❖ Caused by events external to the processor

▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

❖ Examples:

▪ Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

CIT 5950, Spring 2024L03: Posix & BufferingUniversity of Pennsylvania

Synchronous Interrupts
❖ Caused by events that occur as a result of executing an

instruction:
▪ Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults
• Unintentional but theoretically recoverable

• Examples: page faults (recoverable), protection faults
(recoverable sometimes), floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts
• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program

FUN FACT: the terminology and definitions aren’t

fully agreed upon. Many people may use these

interchangeably

	Default Section
	Slide 1: Processes Computer Systems Programming, Spring 2024
	Slide 2
	Slide 3: Administrivia
	Slide 4: Lecture Outline
	Slide 5: Definition: Process
	Slide 6: Computers as we know them now
	Slide 7: Multiple Processes
	Slide 8: OS: Protection System
	Slide 9: Multiprocessing: The Illusion
	Slide 10: Multiprocessing: The (Traditional) Reality
	Slide 11: Multiprocessing: The (Traditional) Reality
	Slide 12: Multiprocessing: The (Traditional) Reality
	Slide 13: Multiprocessing: The (Traditional) Reality
	Slide 14: Multiprocessing: The (Modern) Reality
	Slide 15: Context Switching
	Slide 16: OS: The Scheduler
	Slide 17: Scheduler Considerations
	Slide 18: Any questions so far?
	Slide 19: Lecture Outline
	Slide 20: Terminating Processes
	Slide 21: Creating New Processes
	Slide 22: fork() and Address Spaces
	Slide 23: fork()
	Slide 24: fork()
	Slide 25: fork()
	Slide 26: "simple" fork() example
	Slide 27: "simple" fork() example
	Slide 28: fork() example
	Slide 29: fork() example
	Slide 30: fork() example
	Slide 31: Another fork() example
	Slide 32: Another fork() example
	Slide 33: Another fork() example
	Slide 34: Lecture Outline
	Slide 35: Control Flow
	Slide 36
	Slide 37: Altering the Control Flow
	Slide 38: Exceptional Control Flow
	Slide 39: Interrupts
	Slide 40: Interrupt Tables
	Slide 41: Asynchronous Interrupts
	Slide 42: Synchronous Interrupts

